University Health Network (UHN) is a research hospital affiliated with the University of Toronto and a member of the Toronto Academic Health Science Network (TAHSN). UHN comprises the Michener Institute for Education at UHN and four hospitals: the Princess Margaret Cancer Centre (PM Cancer Centre), Toronto General Hospital (TG), Toronto Rehab (TR) and Toronto Western Hospital (TW). It has five research institutes: Krembil Research Institute (Krembil), PM Cancer Centre, Techna Institute for the Advancement of Technology for Health (Techna), Toronto General Hospital Research Institute (TGHRI) and Toronto Rehabilitation Institute (TRI). Research is supported in part by UHN’s foundations: The Princess Margaret Cancer Foundation (PMCF), the Toronto General & Western Hospital Foundation (TGWHF) and the Toronto Rehab Foundation (TRF). The scope of research and complexity of cases at UHN have made it a national and international source for discovery, education and patient care.

On the cover: The hanging origami shapes feature icons representing various disciplines and skills in research and medicine. The two-dimensional shadow cast by these shapes—‘UHN’—symbolizes how diverse skills and disciplines come together at UHN to advance health research and innovation.
Table of Contents

Welcome Message 2

UHN is Home to Great Places 4

- Toronto General Hospital Research Institute 6
- Techna Institute for Advancement of Technology for Health 16
- Princess Margaret Cancer Centre 22
- Toronto Rehabilitation Institute 32
- Krembil Research Institute 42

UHN Foundations 51

Financials 55
Awards and Distinctions 56
Committees 58
External Sponsors 60
Trustee and Advisory Boards 63
Helping people recover from a stroke. Decoding the genetic mutations that lead to cancer. Developing new tools that use artificial intelligence to diagnose disease.

These are just a few of the paths on which UHN’s scientists, trainees and staff are focused with intense curiosity and dedication. Their paths, however, do not exist in isolation; rather, they are set within UHN’s research ecosystem, and are aligned by a driving mission to improve health through discovery and innovation. This common goal allows UHN to accelerate research into clinical impact at a much more tangible level.

In other words: at UHN, we aren’t just in it—we’re in it together.

Together, we also reach across programs and institutes—sharing cross-cutting knowledge and finding new ways of applying similar solutions to solve broader issues that span multiple disciplines. We bring researchers, engineers, physicians, mathematicians and computer scientists together to develop new solutions for Parkinson disease, depression and epilepsy. We enable cardiovascular researchers to work with neurosurgeons to identify DNA mutations that lead to malformed blood vessels in the brain. Along with our clinical and education counterparts, we are able to analyze issues at multiple angles and find holistic answers for real-world problems.

Together, with our local, national and international partners, we bring new solutions to light. Our three foundations—The Princess Margaret Cancer Foundation, the Toronto General & Western Hospital Foundation and the Toronto Rehab Foundation—provide the invaluable support needed to perform the most cutting-edge research. Our academic partners from across the street and around the globe bring new expertise and diverse insights. Finally, our private sector and government partners help us to apply our findings, whether it’s a tool to better deliver radiation therapy or a new approach to make the health care system more cost effective, to communities worldwide.

An old proverb says, “If you want to go fast, go alone. If you want to go far, go together.” We hope you enjoy this year’s selection of research highlights that demonstrate how—together—we’re all committed to doing just that.
(Left) Dr. Kevin Smith, President and Chief Executive Officer (CEO). (Middle) Dr. Brad Wouters, Executive Vice President (EVP), Science and Research. (Right) Dr. Charlie Chan, past President and CEO (until May 22, 2018); past EVP, Clinical Programs, Quality and Safety (until October 31, 2018).
UHN IS HOME TO GREAT PLACES
Four academic hospitals, an education institute and five research institutes that work together to enable our researchers to make discoveries, create technologies and gain valuable insights to improve health.
TORONTO GENERAL HOSPITAL RESEARCH INSTITUTE

355 researchers

243 trainees
 98 research fellows
 145 graduate students

183.4K sq. ft. research space

$80.1M external funding

1,432 publications

313 staff
in it together
to discover the unknown

Dr. Lena Serghides
Scientist, TGHRI

Dr. Slava Epelman
Scientist, TGHRI

Dr. Thomas Waddell
Senior Scientist, TGHRI
Toronto General Hospital Research Institute researchers are revealing new insights into health and disease.
Peak Performance

Immune cells in the heart work hard to eliminate viruses that damage heart muscle

Have you been sick with a cold recently? That sore and scratchy throat is caused by infection with a cold virus, which is typically eliminated by the immune system in a week or so.

In some cases, however, cold and other viruses can infect the heart, which could lead to much more serious consequences. Viral infection can cause myocarditis, inflammation of the heart muscle that can compromise its ability to pump blood. Little is known about how the immune system plays a role in this disease.

To address this gap in knowledge, Dr. Slava Epelman led a study to examine the role of dendritic cells, a type of immune cell, in viral myocarditis. His research team found that at least five types of dendritic cells reside in the heart, where they trigger immune responses to help eliminate infections.

The team noted that the two most abundant types of dendritic cells in the heart were crucial for eliminating viruses that infect the heart. The absence of these cells not only dampened the anti-virus response, but also led to significant heart damage that impaired the organ’s pumping action—an early warning sign for heart failure.

These results suggest that dendritic cells are important gatekeepers of heart health: they quickly eliminate viral infections before the infections can cause full-blown heart failure. Understanding the role that these immune cells play in this process could help with the development of new therapies to treat heart infections.

Clemente-Casares X et al. Immunity. 2017 Nov 21;47(5):974-989. Supported by the Canadian Institutes of Health Research (CIHR), the Heart and Stroke Foundation, the March of Dimes Canada, the Ted Rogers Centre for Heart Research, the Heart & Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, the Peter Munk Cardiac Centre (PMCC), the National Institutes of Health (NIH) and the Toronto General & Western Hospital Foundation (TGWHF). M Cybulsky holds a Tier 1 Canada Research Chair (CRC) in Arterial Wall Biology and Atherogenesis.
Treatment for Two

HIV drugs alter levels of a hormone that is critical to a healthy pregnancy

A healthy pregnant woman translates to a healthy baby. This is the reason that many women go to great lengths to improve their health once they become pregnant.

But as Dr. Lena Serghides discovered in two studies, women who are infected with the human immunodeficiency virus (HIV) face greater challenges when trying to ensure the health of their babies.

HIV-positive pregnant women are advised to take a drug regimen—commonly referred to as combination antiretroviral therapy (cART)—to prevent mother-to-child transmission of the virus. Unfortunately, these drug regimens are often associated with a number of adverse birth outcomes, including preterm delivery and low birth weight.

To better understand how these treatments affect birth outcomes, Dr. Serghides and her research team measured the levels of several different hormones in pregnant women, before and after they were randomly assigned to take two different cART regimens.

Her team found that levels of the hormone estradiol were decreased in women taking one type of cART regimen and increased in those taking the other. These changes were linked to significantly lower birth weight, suggesting that hormonal changes may contribute to the adverse birth outcomes for women taking cART.

Says Dr. Serghides, “The results of our study underscore the need for more research on the long-term effects of these regimens as they may affect fetal development by differentially altering hormone levels.”

Tools of the Trade

A new method enables scientists to better control the production of cell types

Jack of all trades, master of none. It can be nice to have many skills, but sometimes it’s better to focus on building expertise in one key area.

The same may be true when developing cell therapies with iPS and iPBL cells, as Dr. Thomas Waddell and his graduate student Li Guo found. iPS cells are stem cells that can be used to make a wide variety of cell therapies; however, their use is limited because they could grow into unwanted cell types, including tumours.

To address these limitations, the research team (along with Dr. Andras Nagy from the Lunenfeld-Tanenbaum Research Institute) used an approach called ‘interrupted reprogramming’ to make iPBL cells. In contrast to iPS cells, iPBL cells can be coaxed into becoming only a restricted number of different cell types, depending on the type of cell that was used to make the iPBL cell.

This method makes it easier to control which cell types can be produced and to create batches of cells that are more pure.

To explore the potential use of iPBL cells to treat respiratory disease, the research team focused on a type of cell—known as a club cell—that is found on the inner surface of the lungs. They used their approach to convert club cells into iPBL cells; then, they coaxed the iPBL cells into becoming other types of lung cells, such as goblet cells, which produce a thick fluid that traps foreign substances in the lungs.

This method could be used to develop new cell-based therapies to speed up the healing process after lung injury or to repair donor lungs before transplantation.

Guo L et al. Stem Cell Reports. 2017 Dec 12;9(6):1780-1795. Supported by the Hospital for Sick Children Transplant and Regenerative Medicine Program, CIHR, the Ontario Research Fund (ORF) and TGWHF. TK Waddell holds the Pearson-Ginsberg Chair in Thoracic Surgery and the Thomson Family Chair in Translational Research. A Nagy holds a Tier 1 CRC in Stem Cells and Regeneration.
Promoting Gender Equity in the Sciences

Dr. Radisic, a Senior Scientist at TGHRI, is recognized as an exceptional mentor through her teaching and leadership activities. She participates in several outreach programs to promote science and engineering to girls. And, she actively advocates for gender equity in the selection of keynote speakers, award winners and new fellows at the Tissue Engineering and Regenerative Medicine International Society.

“Dr. Radisic is a brilliant mentor and inspiring role model,” says Dr. Brad Wouters, Executive Vice President, Science and Research. “She is very deserving of this recognition and we are proud that she is part of the UHN research community.”

A Risk Uncovered

Almost one in every two Canadians with diabetes will develop kidney disease, a leading cause of illness and death. Drs. David Cherney and Bruce Perkins discovered a key factor that influences the progression of kidney disease in these patients. *JCI Insight*. 2018 Jan 11;3(1). pii: 96968.

Attracting Funding

UHN spin-off company Thornhill Medical, which was founded by Drs. Joseph Fisher and Ludwik Fedorko, secured funding to expand its global sales and marketing presence and to conduct research in the fields of non-invasive cardiac and brain stress testing.
Research Council

Director, TGHRI (Chair) Mansoor Husain
Research Division Head, Advanced Diagnostics Myron Cybulsky
Research Division Head, Experimental Therapeutics (Acting) Mansoor Husain
Research Division Head, Support, Systems & Outcomes Murray Krahn
Clinical Program Head, Peter Munk Cardiac Centre Barry Rubin
Clinical Program Head, Medical & Community Care Edward Cole
Clinical Program Head, Surgical and Critical Care Shaf Keshavjee
Clinical Program Head, Transplantation Atul Humar
Surgeon-in-Chief Shaf Keshavjee
Physician-in-Chief Edward Cole
Chair, TGHRI Appointments Committee Jason Fish
Group Lead, Cardiovascular Slava Epelman
Group Lead, Communities of Health Shabbir Alibhai
Group Lead, Infection & Immunity Adam Gehring
Group Lead, Metabolism Minna Woo
Group Lead, Respiratory & Critical Care Mingyao Liu
Senior Vice President and Executive Lead, TG Scott McIntaggart
Executive Vice President, Science and Research Brad Wouters

Researchers

Advanced Diagnostics
Emeritus Scientist
Daniel Cattran
Senior Scientists
Johane Allard
Peter Backx
Myron Cybulsky
I George Fantus
Eleanor Fish
Jason Fish
Joseph Fisher
John Floras
Tony Lam
Gary Lewis
Mingyao Liu
Kumararaswamy Nanthakumar
York Pei
Bruce Perkins
James Scholey
Katherine Siminovitch

Mansoor Husain
Harry Janssen
Kevin Kain
Keyvan Karkouti
Rupert Kaul
Shaf Keshavjee
Lakshmi Kotra
Michael Laflamme
Gary Levy
Ren-Ke Li
Ian McGilvray
Nancy Olivieri
Milica Radisic
Vivek Rao
Thomas Waddell
Sharon Walmsley
Richard Weisel

Scientists
Vijay Chauhan
Chung-Wai Chow
Marcelo Cypel
Satya Dash

Experimental Therapeutics

Senior Scientists
T Douglas Bradley
Mark Cattral
Marc de Perrot
Niall Ferguson
Herbert Gaisano
Margaret Herridge
Atul Humar

Donald Branch

Hong Chang
Peter Liu
Julie Lovshin
Philip Millar
Sheila Riazi
Barry Rubin
Anna Sawka
Markus Selzner
William Stansfield
Florence Wong

Mansoor Husain
Harry Janssen
Kevin Kain
Keyvan Karkouti
Rupert Kaul
Shaf Keshavjee
Lakshmi Kotra
Michael Laflamme
Gary Levy
Ren-Ke Li
Ian McGilvray
Nancy Olivieri
Milica Radisic
Vivek Rao
Thomas Waddell
Sharon Walmsley
Richard Weisel

Scientists
Vijay Chauhan
Chung-Wai Chow
Marcelo Cypel
Satya Dash
Jordan Feld
Adam Gehring
Ewan Goligher
Michael Gollob
J Andrea McCart
M Cristina Nostro
Nazia Selzner
Lena Serghides
Sara Vasconcelos
Kazuhiro Yasufuku
Assistant Scientists
Andrzej Chruscinski
Sonya MacParland
Affiliate Scientists
Marisa Battistella
Mamatha Bhat
Gail Darling
Anand Ghanekar
Siba Haykal
Raymond Hui
Shahid Husain
David Hwang
Angela Jerath
Stephen Juvet
Joel Katz
David Kelvin
Raymond Kim
Thomas Lindsay
Cedric Manlhiot
Tereza Martinu
Raymond Reilly
Heather Ross
Michael Sefton
Darrell Tan
Terrence Yau
Support, Systems & Outcomes
Emeritus Scientist
Janet Raboud
Senior Scientists
Shabbir Alibhai
Anne Bassett
Claire Bombardier
Angela Cheung
Peter Cram
Alastair Flint
Moira Kapral
Murray Krahn
Douglas Lee
Charmaine Lok
Robert Nolan
Gary Rodin
Peter Singer
Donna Stewart
George Tomlinson
David Urbach
Scientists
Ana Carolina Alba
Anna Gagliardi
Bettina Hansen
Vanita Jassal
Valeria Rac
Beate Sander
Assistant Scientist
Andy Wong
Affiliate Scientists
Thomas Forbes
Suzanne Fredericks
Andrew Ha
Adrienne Kovacs
Lori MacCallum
Jane Maclver
Gail McVey
Nicholas Mitsakakis
Karen Okrainec
Marion Olmsted
Jacob Pendergrast
Rima Styra
Alice Wei
D Blake Woodside
Clinical Researchers
Susan Abbey
Peter Adamson
Carmen Avila-Casado
Mitesh Badiwala
Joanne Bargman
W Scott Beattie
Chaim Bell
Lee Benson
Andrea Boggild
Isaac Bogoch
Vera Bril
Jennifer Bryan
John Byrne
Jeannie Callum
Carl Cardella
Charles Chan
Christopher Chan
Raymond Chan
Lucas Chartier
Anil Chopra
Hance Clarke
Edward Cole
Patricia Colton
Richard Cooper
Sharon Cushing
Robert Cusimano
Tirone David
Lorenzo Del Sorbo
Diego Delgado
Allan Detsky
Eleftherios Diamandis
George Djaiani
Michael Domanski
Laura Donahoe
James Downar
Daniel Drucker
Vladimir Dzavik
Eddy Fan
Michael Farkouh
Ludwik Fedorko
Andrew Feifer
Denice Feig
Christopher Feindel
Stanley Fenton
Olavo Fernandes
Jolene Fisher
Scott Fung
in it together
to redefine what’s possible

Dr. Kazuhiro Yasufuku
Affiliated Faculty, Techna; Scientist, TGHRI
VISIONARY MEDICINE

From nanotech to image-guided surgery, Techna researchers are transforming the way that health care is delivered.
Guaranteed Delivery

Enlisting tiny nanoparticles to deliver a new kind of therapy for lung cancer

They say good things come in small packages. A recent therapy developed by Dr. Kazuhiro Yasufuku epitomizes this phrase. Measuring less than a thousand times the width of a single hair, it promises to transform the way that lung cancer is treated.

The approach uses a technology known as small interfering RNA (siRNA), which can be used to target and silence the genes that drive lung cancer cell growth.

However, delivering this promising drug to cancer cells has been a challenge because the siRNAs are just as likely to kill a healthy cell as a cancer cell.

To overcome this challenge, Dr. Yasufuku linked an siRNA molecule to a tiny nanoparticle that specifically infiltrates lung cancer cells. These newly designed nanoparticles dramatically slowed the growth of lung cancer cells in an experimental model of disease without affecting healthy cells.

Explains Dr. Yasufuku “Our study demonstrates that it is possible to develop siRNAs that target cancer cells more precisely. We are refining this technique in hopes of developing customized siRNA treatments for patients with advanced lung cancer who currently have little to no therapeutic options and high rates of mortality.”

ASTRO Gold Medal

Dr. David Jaffray was awarded one of three 2018 Gold Medals from the American Society for Radiation Oncology (ASTRO). ASTRO is the premier radiation oncology society in the world, with more than 10,000 members that include physicians, nurses, biologists, physicists, radiation therapists, dosimetrists and other health care professionals who specialize in treating patients with radiation therapies.

The Gold Medal is ASTRO’s highest honour, bestowed on members who have made outstanding contributions to the field of radiation oncology. This includes research, clinical care, teaching and service.

Dr. Jaffray’s research is focused on the development and application of image-guided radiation therapy. His contributions include advancing the use of cone-beam CT to image patients at the time of treatment, and improving the targeting of radiation therapy.

Acumyn Acquired

Acumyn Inc. was recently acquired by global radiotherapy giant Elekta. UHN created Acumyn to commercialize AQUA™, a clinical software platform developed at PM Cancer Centre to help manage and automate the complex and demanding quality assurance tests in a radiotherapy clinic.

It is an example of Techna using its medical device engineering and product development expertise to help advance a product to commercial success.

Techna’s services included project management, documentation to achieve ISO 13485 and 9001 certification, the creation of marketing materials, a user manual and website, user interface design and financial services.

This expertise, combined with real-world evidence and product refining provided by PM Cancer Centre and the support of UHN’s Technology Development and Commercialization office, helped Acumyn to scale-up and succeed.
Leadership Team

Director, Techna Institute **David Jaffray**
Director, Clinical Processes **Howard Abrams**
Senior Director, Techna Innovation **Luke Brzozowski**
Director, Knowledge Transfer **Nicole Hartnett**
Director, Clinical Research Faculty **Jonathan Irish**
Director, Physical Sciences Research Faculty **J Paul Santerre**
Director, Commercialization **Mark Taylor**
Executive Vice President, Science and Research **Brad Wouters**

Researchers

Design & Engineering for Health

Core Lead
Joseph Cafazzo

Affiliated Faculty
Emily Seto
Patricia Trbovich

Guided Therapeutics

Core Leads
Jonathan Irish
David Jaffray
Walter Kucharczyk

Scientists
Margarete Akens
Arash Zarrine-Afsar
Jinzi Zheng

Affiliated Faculty
Dionne Aleman
Jean-Pierre Bissonnette
Timothy Chan
Douglas Chepeha
Catherine Coolens
John de Almeida
Jonathan Downar
James Drake

Gabor Fichtinger
Howard Ginsburg
Justin Grant
Andrew Hope
Mohammad Islam
Daniel Létourneau
Andres Lozano
Claire McCann
Chris McIntosh
Cynthia Ménard
Kieran Murphy
Kumaraswamy Nanthakumar
Narinder Paul
Thomas Purdie
Dheeraj Rajan
Alexandra Rink
Patrik Rogalla
Michael Sherar
Teodor Stanescu
Michael Velec
Robert Weersink
Bernd Wintersperger
Kazuhiro Yasufuku

Informatics & Communications Technology

Core Leads
Igor Jurisica
Peter Rossos

Affiliated Faculty
Brenda Gallie
Alejandro Jadad
Michael Jewett
Gordon Tait
Christian Veillette

Nanotechnology & Radiochemistry

Core Leads
Ur Metser
Gang Zheng

Affiliated Faculty
John Valliant

Photonics

Core Lead
Brian Wilson

Scientist
Ralph DaCosta

Affiliated Faculty
I Alex Vitkin
PRINCESS MARGARET CANCER CENTRE

333
researchers

270
trainees
 127 research fellows
 143 graduate students

417.4K
sq. ft. research space

$141.7M
external funding

1,213
publications

764
staff
in it together
every step of the way

Dr. Mary Jane Esplen
Affiliate Scientist,
PM Cancer Centre

Dr. Naoto Hirano
Senior Scientist,
PM Cancer Centre

Dr. Hansen He
Senior Scientist,
PM Cancer Centre
CONQUERING CHALLENGES

Princess Margaret Cancer Centre researchers are improving care for patients throughout the entire cancer journey.
Coping with cancer and receiving treatment can leave patients scarred and emotionally drained. Having lived through a combination of surgery, chemotherapy and radiotherapy, survivors often grapple with cancer’s emotional toll long after their physical recovery.

“Breast cancer survivors may have lost one or both of their breasts, have residual scars or swelling, and start menopause prematurely,” describes Dr. Mary Jane Esplen. “These effects often cause survivors to experience grief, lowered self-esteem and confidence, and shame about the appearance of their body.”

To improve the emotional well-being of breast cancer survivors, Dr. Esplen developed a program called Restoring Body Image after Cancer (ReBIC).

The program consists of eight group sessions where participants are encouraged to generate a series of images in their mind’s eye. These exercises help them to express their personal identity and self-image difficulties and to work through them. Factors that promote a negative body image and feelings of shame are also discussed.

In a study completed by Dr. Esplen to evaluate the impact of ReBIC, participants reported improvements in body image, their quality of life and ability to manage breast cancer-related symptoms. In light of its success, ReBIC is now being offered at University Health Network.

Performance Upgrade for Immune Cells

Enhancing immunotherapy to treat a variety of cancers

When it comes to self-improvement, we have all sorts of tools at our disposal: glasses to improve our vision, treadmills to help us stay fit, and vaccines to ward off infectious diseases.

A research team led by Dr. Naoto Hirano has engineered a molecule with the potential to enhance the effectiveness of our immune system against cancer.

Chimeric antigen receptor (CAR) T cell therapy is an immunotherapy currently approved in the United States to treat blood cancers. It involves extracting immune cells from the patient, genetically engineering them to recognize cancerous cells, and infusing them back into the patient where they are able to target and kill cancerous cells.

“The CAR molecule enables immune cells to recognize cancerous cells,” explains Dr. Hirano.

“We have engineered an improved CAR molecule that imparts greater potency to immune cells against different cancers, including solid tumours, and showed that it did not worsen any potential side effects in experimental models.”

Future work will focus on validating these findings and translating them into clinical trials to improve the safety and efficacy of the CAR T cell therapy.

Kagoya Y, et al. Nat Med. 2018 Mar; 24(3):352-359. Supported by CIHR, the Ontario Institute for Cancer Research (OICR), BioCanRx, Japan Society for the Promotion of Science, the Government of Ontario, the Natural Sciences and Engineering Research Council of Canada (NSERC), Takara Bio Inc. and PMCF.
Little Changes that Matter
A single DNA letter variation in the genome can impact cancer risk

Just as a snowfall atop a mountain can mark the beginning of an avalanche, a single, often innocuous event can mark the beginning of a catastrophe.

Some of the most devastating cancers can also have an unremarkable beginning. Dr. Hansen He has discovered just such a seemingly innocuous event.

Tracing back the progression of prostate cancer, Dr. He and his team discovered that varying a single letter in an individual’s genetic code can increase the risk for a more aggressive form of prostate cancer.

“We found that this particular genetic variation is not in a functional region of the genome—such as a region that contains instructions for building cellular machinery or for housekeeping activities,” says Dr. He.

“Rather, it was in a region of the genome considered to have no useful information.”

“We need more studies at the genome level to understand how these single genetic variations can change the way cells regulate their activity,” adds Dr. He. “Then we can evaluate how they change the risk for cancer and take steps to prevent them from worsening outcomes.”

Hua J, et al. Cell. 2018 Jul 26; 174(3):564-575.e18. Supported by NSERC; CIHR; the Movember Foundation; Prostate Cancer Canada; the U.S. Department of Defense; The Terry Fox Research Institute; the Ministry of Economic Development, Job Creation and Trade; and PMCE.
Congratulations to Dr. Frances Shepherd (above), a medical oncologist at PM Cancer Centre, who received the prestigious 2018 Canada Gairdner Wightman Award for her global leadership in lung cancer research.

The award recognizes Dr. Shepherd’s outstanding impact over her 30-year career in the field of clinical trials for lung cancer.

She has led landmark studies that have changed treatment and outcomes for patients with lung cancer. For example, she led the Canadian Clinical Trials Group Lung Cancer Site, which revealed that post-operative chemotherapy can increase the cure rate for resected lung cancer, and that molecularly targeted treatments can improve survival even in the most advanced stages of the disease.

The recognition adds to Dr. Shepherd’s other honours, such as the Order of Canada and the Queen Elizabeth II Jubilee Medal.

In June 2018, the UHN spinout company AVROBIO held an initial public offering (IPO) on the NASDAQ stock exchange. It raised more than US $100 million, and had a market cap of greater than US $651 million.

The clinical stage company, which was founded based on the work of Dr. Christopher Paige (UHN Senior Scientist) and Dr. Jeffrey Medin (previously a researcher at UHN; now at the Medical College of Wisconsin), is focused on developing curative lentiviral-based gene therapies to treat rare diseases.

The IPO was well received by the investment community. The offering follows several previous rounds of financing—resulting in over US $90 million invested, including a US $60 million Series B raise. In celebration of the public listing, AVROBIO President and CEO Geoff MacKay and a team of AVROBIO’s staff, partners and leaders participated in the closing bell ceremony of the NASDAQ stock exchange (pictured).

Oncologist Honoured
Research Council on Oncology

Director, Research (Interim) Mitsuhiko Ikura
Executive Committee Naoto Hirano, Thomas Kislinger, Mathieu Lupien, Aaron Schimmer,
Vuk Stambolic, Ming-Sound Tsao, Gang Zheng, Camilla Zimmermann
Medical Director, Cancer Program Mary Gospodarowicz
Medical Director, Laboratory Medicine Program Runjan Chetty
Head, Cancer Clinical Research Unit; Head, Medical Oncology and Hematology Amit Oza
Head, Psychosocial Oncology Gary Rodin
Head, Radiation Medicine Fei-Fei Liu
Chief, Surgical Oncology Gelareh Zadeh
Senior Vice President and Executive Lead, PM Cancer Centre Marnie Escaf
Executive Vice President, Science and Research Brad Wouters

Researchers

Emeritus Scientists
Norman Boyd
Richard Hill
A Michael Rauth

Senior Scientists
Cheryl Arrowsmith
Sylvia Asa
David Brooks
Avijit Chakrabartty
Daniel DeCarvalho
Gerald Devins
John Dick
Shereen Ezzat
Razqallah Hakem
David Hedley
Naoto Hirano
Doris Howell
Mitsuhiko Ikura
Norman Iscove
David Jaffray
Jennifer Jones
Gordon Keller
Rama Khokha
Thomas Kislinger
Lothar Lilge
Fei-Fei Liu
Geoffrey Liu
Mathieu Lupien
Tak Mak
Tracy McGaha
Mark Minden
Benjamin Neel
Pamela Ohashi
Emil Pai
Christopher Paige
Linda Penn
Gilbert Privé
Brian Raught
Gary Rodin
Robert Rottapel
Aaron Schimmer
Vuk Stambolic
Ming-Sound Tsao
I Alex Vitkin
Brian Wilson
Brad Wouters
Gang Zheng
Camilla Zimmermann

Scientists
Laurie Ailles
Scott Bratman
Steven Chan
Ralph DaCosta
Kim Edelstein
Benjamin Haibe-Kains
Hans He
Michael Hoffman
Marianne Koritzinsky
Mohammad Mazhab-Jafari
Faiyaz Notta
Catherine O’Brien
Trevor Pugh
Rodger Tiedemann
Gelareh Zadeh

Assistant Scientist
Christopher Marshall

Affiliate Scientists
Kenneth Aldape
Mark Bray
Eric Chen
Phedias Diamandis
Ryan Dowling
Mary Jane Esplen
Anthony Joshua
C Anne Koch
Paul Kongkham
Robert Kridel
Benjamin Lok
Michael Moran
Michael Reedijk
Leonardo Salmena
Suzanne Trudel
Jean Wang
Researchers PM Cancer Centre

Paul Waterhouse
Wei Xu
Eldad Zackenhaus

Cancer Clinical Research Unit
Majd Al Mardini
Hamideh Alasti
Zishan Allibhai
Eitan Amir
Mostafa Atri
Michael Baker
Subrata Banerjee
Aisling Barry
David Barth
Eric Bartlett
Andrew Bayley
Philippe Bedard
J Robert Beecroft
Alejandro Berlin
Marcus Bernardini
Mark Bernstein
Lori Bernstein
Andrea Bezjak
Jean-Pierre Bissonnette
Scott Boerner
Geneviève Bouchard-Fortier
Penelope Bradbury
Stephen Breen
William Brien
James Brierley
Dale Brown
John Bryson
Ronald Burkes
Marcus Butler
Charles Catton
David Cescon
Sami Chadi
Hong Chang
Tanya Chawla
Christine Chen
Terry Cheng
Douglas Chepeha
Runjan Chetty
Carol Cheung
John Cho
Charles Cho
Peter Chung
TaeBong Chung
Tulin Cil
Blaise Clarke
Tatiana Conrad
Timothy Craig
Jennifer Croke
R Michael Crump
Christine Cserti-Gazdewich
Bernard Cummings
Marcelo Cypel
Norma D’Agostino
Andrei Damyanovich
Gail Darling
Laura Dawson
John de Almeida
Marc de Perrot
Neesha Dhani
Eleftherios Diamandis
Susan Done
Alexandra Easson
Elena Elimova
Mary Elliott
Christine Elser
Dean Elterman
Jaime Escallon
Andrew Evans
Ronald Feld
Louis Fenkell
Peter Ferguson
Sarah Ferguson
Antonio Finelli
Peter Fitzgerald
Neil Fleschner
Warren Foltz
Robin Forbes
Jeremy Freeman
Anthony Fyles
Lucia Gagliese
Steven Gallinger
William Geddie
Fred Gentili
Sandeep Ghai
Sangeet Ghai

Danny Ghazarian
Ralph Gilbert
Meredith Giuliani
Rebecca Gladdy
David Goldstein
Pamela Goodwin
Mary Gospodarowicz
Anand Govindarajan
David Grant
Paul Greig
Robert Gryfe
Luis Guimaraes
Patrick Gullane
Vikas Gupta
Abha Gupta
Sarah Hales
Robert Hamilton
Kathy Han
Anthony Hanbidge
Breffni Hannon
Aaron Hansen
Siba Haykal
Joelle Helou
David Hodgson
Stefan Hofer
David Hogg
Andrew Hope
Ali Hosni
Jonathan Irish
Raymond Jang
Hyun-Jung Jang
Michael Jewett
Kartik Jhaveri
Jennifer Jones
John Kachura
Suzanne Kamel-Reid
Zahra Kassam
Edward Kassel
Armand Keating
Erin Kennedy
Shaf Keshavjee
Korosh Khalili
Rasmus Kiehl
Tae Kyoung Kim
John Kim
114 researchers
56K sq. ft. research space
471 publications
$12M external funding
78 staff
in it together
for a healthier future

Dr. Azadeh Yadollahi
Scientist, TRI

Dr. Babak Taati
Scientist, TRI

Dr. Alison Novak
Scientist, TRI
THE FUTURE OF REHABILITATION

Toronto Rehabilitation Institute offers a glimpse of things to come
Shock Your Socks off

Electrical stimulation could alleviate symptoms of sleep apnea

Electricity is a powerful treatment for many conditions. It can keep the heart beating at a healthy pace and restore movement in paralyzed limbs.

Dr. Azadeh Yadollahi discovered that electricity could also be used to prevent the accumulation of excess fluid in legs.

During prolonged periods of inactivity, fluid tends to pool in the legs. This can lead to a variety of complications including painful swelling and increased risk of leg ulcers and blood clots. While sleeping, the excess leg fluid can also move into the neck, where it can worsen the symptoms of sleep apnea, a disorder in which breathing slows or stops for minutes at a time during sleep.

In a recent study, Dr. Yahollahi tested whether electrical stimulation of calf muscles could reduce leg fluid buildup.

She measured fluid buildup in the legs of 13 patients with sleep apnea while they sat for 1.5 hours during two separate sessions. In one session, the electrical therapy was applied through a custom-made sock; whereas in the other session, participants received a mock therapy. She found that electrical stimulation reduced fluid buildup by 43% and leg swelling by almost 90%.

“Our findings show that electrical stimulation of the calf is a promising strategy to prevent leg fluid accumulation. The improvements that we observed suggest that our approach has the potential to ease the symptoms of sleep apnea,” says Dr. Yadollahi.

RoboDoc to the Rescue

Using artificial intelligence to optimize treatment in Parkinson disease

Artificial intelligence (AI) has blurred the lines between science fiction and reality with self-driving cars, humanoid robots and virtual assistants. Researchers are also harnessing its power to improve treatments for diseases, like Parkinson disease.

Parkinson disease is characterized by slowed and stiff movements and tremors. Although these symptoms can be controlled through medications like levodopa, many patients who take levodopa experience side effects such as muscle spasms and involuntary movements.

A major challenge for neurologists is adjusting levodopa’s dosage, so that the disease symptoms are reduced without worsening the drug’s side effects. Moreover, evaluating the side effects’ severity is subjective and varies by neurologist.

To remedy this, a research team led by Dr. Babak Taati is using a form of AI known as deep learning.

The researchers captured short videos of patients receiving infusions of levodopa and used the deep learning algorithm to measure the severity of the patients’ spasms and involuntary movements. Their findings revealed that the AI algorithm performed as well as or better than neurologists at gauging treatment response.

“Our AI algorithm was able to accurately detect the onset and the remission of side effects in response to levodopa infusion. We hope to turn our algorithm into a clinical tool that helps doctors prescribe more effective treatments,” says Dr. Taati.

Li MH et al. Parkinsonism Relat Disord. 2018 Aug;53:42-45. Supported by NSERC, TRF and TGWHF.
Setting a High Bar for Safety

Defining the features of the best handrails to prevent falls

A massive, one-of-a-kind research facility is located underneath Toronto Rehab, and researchers are using it to help make the world a safer and more accessible place for everyone.

Known as the Challenging Environment Assessment Laboratory (CEAL), this facility houses a cutting-edge hydraulic motion simulator that can be used to mimic everyday environmental challenges, such as driving with headlight glare or walking on an icy, inclined surface.

Dr. Alison Novak and her team recently used CEAL to improve the design of handrails to help prevent falls in healthy adults.

The research team asked study participants wearing safety harnesses to stand next to a handrail within the advanced motion simulator (illustrated below). The platform was then programmed to deliver quick and sudden movements to make participants fall. The resulting falls were recorded with motion capture cameras, while handrail sensors recorded forces applied to the rail.

The team found that participants’ ability to recover their balance and control during a fall increased as the height of the handrail increased, and that higher handrails might provide greater stability with reduced physical demands.

“Given that the handrail heights that we tested are within the range required by the International Building Code, our findings could be used to improve current building standards,” explains Dr. Novak.

“Future research will determine the handrail features to prevent falls in older adults and people with mobility or balance impairments, as these individuals are at high risk of falls and fall-related injuries.”

Komisar V et al. Gait Posture. 2017 Dec 14(60);209-216. Supported by CIHR, AGE-WELL (Aging Gracefully across Environments using Technology to Support Wellness, Engagement and Long Life), TRI, the University of Toronto and TRF.
DriverLab Gearing up to Improve Vehicle Design

In October 2017, the most advanced driving simulator in Canada hit the virtual road at UHN. As a part of TRI’s CEAL, DriverLab enables researchers to study the impact of our health on driving performance, with the aim of increasing safety for the elderly and those with injury or illness.

“It provides realistic and challenging driving conditions through the use of a full-size passenger vehicle and 360-degree visual projection and surround-sound systems, all mounted on a hydraulic motion platform with seven degrees-of-freedom. It also includes unique rain and headlight glare simulators,” explains Dr. Jennifer Campos, Chief CEAL Scientist. “This technology will help improve driver safety by considering the effects of drugs, drowsiness and distraction on driving performance and by optimizing vehicle design, including automated vehicle technologies.”

DriverLab was made possible by the Canadian Institutes of Health Research, the Canada Foundation for Innovation, the Government of Ontario and the Toronto Rehab Foundation.

New Director Welcomed

In 2018, Dr. Milos Popovic was appointed as TRI’s Director of Research. He comes with over 15 years of experience as a researcher at TRI, during which time he has made outstanding contributions, including the creation of MyndMove™—a new therapy to help paralyzed stroke patients regain upper limb function.

Tech for Brain Health

UHN and the University of Toronto launched the CenteR for Advancing Neurotechnological Innovation to Application (CRANIA). Housed in Toronto Western Hospital, CRANIA will bring together multidisciplinary research and clinical expertise to develop and commercialize implantable devices to treat neurological disorders.
Research Advisory Council

Director, TRI (Chair) Milos Popovic
Associate Director Susan Jaglal
Team Leaders Mark Bayley, Angela Colantonio, B. Catharine Craven, Tilak Dutta, Robin Green, Owen Lyons, Katherine McGilton, Alex Mihailidis, Paul Oh, Catriona Steele, Yana Yunusova
Director, iDAPT Engineering Services & Industry Relations Barry Westhead
Business Development Lead Anthony Palma
Strategic Project Manager Sophia Yue Li
Manager, Central Patient Recruitment Louise Brisbois
Manager, Research Operations Lois Ward
Manager, Research Operations Majid Janidarmian
Chair, Department of Physical Therapy, Faculty of Medicine, University of Toronto Darlene Reid
Senior Vice President and Executive Lead, Toronto Rehab Susan Jewell
Executive Vice President, Science and Research Brad Wouters

Researchers

Acquired Brain Injury & Society

Senior Scientists
Mark Bayley
Angela Colantonio

Scientist
Nora Cullen

Affiliate Scientists
Deirdre Dawson
Emily Nalder
Mary Stergiou-Kita

Artificial Intelligence & Robotics for Rehabilitation

Senior Scientist
Alex Mihailidis

Scientists
Frank Rudzicz
Babak Taati

Affiliate Scientists
Sonya Allin
Jennifer Boger
Sven Dickinson
David Fleet
Deborah Hébert
Jesse Hoey
Dana Kulić
Alan Mackworth
Goldie Nejat
Pascal Poupart
Rosemary Ricciardelli
Rosalie Wang

Brain Discovery & Recovery

Senior Scientists
Mark Bayley
Robin Green

Affiliate Scientist
Asaf Gilboa

Cardiorespiratory Fitness

Senior Scientists
David Alter
Sherry Grace

Scientists
Tracey Colella
Paul Oh

Affiliate Scientists
Jack Goodman
Krista Lantôt
Walter Swardfager
Scott Thomas
<table>
<thead>
<tr>
<th>Researchers TRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
</tr>
<tr>
<td>Senior Scientists</td>
</tr>
<tr>
<td>Elizabeth Rochon</td>
</tr>
<tr>
<td>Yana Yunusova</td>
</tr>
<tr>
<td>Scientist</td>
</tr>
<tr>
<td>Frank Rudzicz</td>
</tr>
<tr>
<td>Affiliate Scientists</td>
</tr>
<tr>
<td>Melanie Baljko</td>
</tr>
<tr>
<td>Boaz Ben-David</td>
</tr>
<tr>
<td>Craig Chambers</td>
</tr>
<tr>
<td>Tom Chau</td>
</tr>
<tr>
<td>Petros Faloutsos</td>
</tr>
<tr>
<td>Karen Gordon</td>
</tr>
<tr>
<td>Julie Mendelson</td>
</tr>
<tr>
<td>Aravind Namasivayam</td>
</tr>
<tr>
<td>Frank Russo</td>
</tr>
<tr>
<td>Gurjit Singh</td>
</tr>
<tr>
<td>Pascal van Lieshout</td>
</tr>
</tbody>
</table>

| Senior, Community & Institutional Environments |
| Senior Scientists |
| Geoff Fernie |
| Andrea Furlan |
| Scientists |
| Jennifer Campos |
| Tilak Dutta |
| Bruce Haycock |
| Behrang Keshavarz |
| César Márquez-Chin |
| Alison Novak |
| Christine Novak |
| Azadeh Yadollahi |

| Affiliate Scientists |
| Veronique Boscart |
| Karen Gordon |
| Dinesh Kumbhare |
| Matthew Muller |
| Hani Naguib |
| Donald Philip |
| Veronica Wadey |

| Mobility |
| Senior Scientists |
| Mark Bayley |
| Dina Brooks |
| Brian Maki |
| W Darlene Reid |
| Scientists |
| William Gage |
| Avril Mansfield |
| Sarah Munce |
| Kara Patterson |

| Affiliate Scientists |
| Alastair Flint |
| Mary Fox |
| Andrea Iaboni |
| Liz Inness |
| Andrew Laing |
| Sunita Mathur |
| Laura Middleton |
| George Mochizuki |
| Stephen Perry |
| James Pratt |
| Luc Tremblay |
| Karl Zabjek |
Neural Engineering & Therapeutics

Senior Scientists
B Catharine Craven
Kei Masani
Milos Popovic

Scientists
César Márquez-Chin
Kristin Musselman
Jose Zariffa

Affiliate Scientists
Sandra Black
Anthony Burns
Julio Furlan
Lora Giangregorio
Sander Hitzig
Pamela Houghton
Sukhvinder Kalsi-Ryan
Cindi Morshead
Ethne Nussbaum
Linda Rapson
Luc Tremblay
Molly Verrier
Timothy Welsh
Paul Yoo

Optimization of the Rehab System

Senior Scientists
Mark Bayley
Cheryl Cott
Andrea Furlan
Susan Jaglal
Pia Kontos
Katherine McGilton
I Gary Naglie

Scientists
Shabbir Alibhai
Nora Cullen

Affiliate Scientists
G Ross Baker
Veronique Boscart
Jill Cameron
Mary Fox
Nancy Salbach
Kathryn Sibley

Sleep Science

Senior Scientists
T Douglas Bradley
W Darlene Reid

Scientists
Hisham Alshaer
Azadeh Yadollahi

Affiliate Scientists
Owen Lyons
Clodagh Ryan

Swallowing Science

Senior Scientist
Catriona Steele

Affiliate Scientist
Lisa Duizer

Clinical Researchers

Eugene Chang
Susan Marzolini
196 researchers

160 trainees

153K sq. ft. research space

$50.8M external funding

905 publications

223 staff

49 research fellows

111 graduate students
Dr. Antonio Strafella
Senior Scientist, Krembil

Dr. Ivan Radovanovic
Scientist, Krembil

in it together
to protect the brain
Krembil researchers are unearthing the mechanisms underpinning neurological diseases such as Parkinson disease and epilepsy
The Root Cause

Mutation of KRAS gene increases risk of hemorrhagic stroke

Roots grow to sustain trees. They split from the main stem and become progressively smaller as they burrow deeper into the soil to seek nutrients and water. Likewise, the arteries in our body grow and branch out into smaller blood vessels that feed and nurture our cells.

In rare cases this process is disrupted, and poorly formed blood vessels develop in the brain. These are referred to as brain arteriovenous malformations (BAVMs). These vessels are weaker and more likely to rupture and cause a stroke.

To get more insight into how BAVMs develop and why they are prone to rupturing or leaking, Dr. Ivan Radovanovic co-led a study with Dr. Jason Fish from the Toronto General Hospital Research Institute that examined the genetic content of BAVM tissue that was surgically removed from patients.

The researchers found that BAVMs from more than half the patients contained a mutated version of the KRAS gene, which is best known for its role in promoting the growth and survival of cancer cells. The altered gene was only located in the cells lining the BAVMs where it weakened the blood vessels.

“Fortuitously, there are cancer drugs available that dampen KRAS effects on cells. The next step will be to test whether these drugs can reverse the effects of mutated KRAS in experimental models of BAVMs,” says Dr. Radovanovic.

Nikolaev SI, et al. NEJM. 2018 Jan 18;378(3):250-261. Supported by CIHR, TGWHEF, Novartis, the Canada Foundation for Innovation, NSERC, the Swiss Cancer League, the European Research Council, the American Heart Association, the Canada First Research Excellence Fund, the Government of Ontario, the Brain Aneurysm Foundation and UHN’s Department of Surgery and Division of Neurosurgery. JE Fish holds a Tier 2 CRC in Vascular Cell and Molecular Biology. M Tymianski holds a Tier 1 CRC in Translational Stroke Research.
Parkinson State of Mind
Discovering alternate brain states that shed new light on Parkinson disease

Just as the appearance of trees can drastically change between two seasons—green and vibrant in spring to leafless and barren in the winter—new evidence suggests that the human brain can also exist in two different states.

This intriguing discovery was made after Dr. Antonio Strafella and his team used a highly sophisticated imaging technique called dynamic functional connectivity to visualize the brains of people with or without Parkinson disease.

The researchers discovered that the brain switches back and forth between two states: in the first state, the brain has sparse connections between cells that transmit information very efficiently; whereas in the second state, it has many connections that transmit information inefficiently.

By comparing the brain states of those with or without Parkinson disease, his team found that people with the disease were more likely to get stuck in the second state. Moreover, a shift in brain states from the first to the second was associated with more severe disease symptoms.

“We are the first to identify this second brain state,” says Dr. Strafella. “Our results indicate that the brain of a patient with Parkinson disease is not very efficient at sending information. Our next step is to figure out what role this process plays in the evolution of the disease.”

The brain is full of electrical activity. These electrical signals move from one cell to another, branching out to different parts of the brain and body where they control everything that we do.

In patients affected by epilepsy these signals misfire causing recurrent surges of abnormal electrical activity that lead to seizures. The cause of these surges is not well understood; however, researchers have shown that it can involve genetics, head trauma, developmental disorders, prenatal brain damage or infections.

Dr. Danielle Andrade recently examined the utility of a genetic test to help determine the cause of unexplained epilepsy in adults with an intellectual disability. The test detects a type of genetic alteration known as copy number variation (CNV), which has been linked to other diseases.

Dr. Andrade and her colleagues discovered that a high proportion of these patients carried rare CNVs that contributed to their epilepsy. Of the CNVs identified, eight were found to affect genes previously implicated in intellectual disability, autism and epilepsy.

“This study shows that genetic testing could provide clinicians with important information that may improve the diagnosis and treatment of epilepsy. Based on these findings, adults with epilepsy of unknown cause should be re-investigated with the modern DNA technologies available today,” says Dr. Andrade.

UHN Launches Krembil Brain Institute

UHN established the Krembil Brain Institute (KBI) to create an academic health sciences entity that harmonizes the institution’s clinical and research priorities in the neurosciences. The new Institute, led by Drs. Gelareh Zadeh and Donald Weaver, will promote new and strengthen existing collaborations between clinicians and researchers across UHN. This, in turn, will accelerate the development of new treatments and cures for diseases of the brain, spine and nerves.

“We have the expertise, the people power and the ambition to take neurosciences to the next phase, which is to understand where we can make the biggest impact on outcomes,” says Dr. Zadeh. The Krembil Neuroscience Centre and the Krembil Research Institute will remain as operational entities within UHN alongside the KBI; however, UHN will move towards the use of a single KBI brand for neuroscience activities. “Establishing KBI allows us to position ourselves to be the predominant leader in brain medicine now and in the years to come,” adds Dr. Weaver.

Computational Boost

Krembil has recruited two new researchers with expertise in computational biology: (pictured, L-R) Dr. Michael Reber who examines cell networks responsible for vision, and Dr. Milad Lankarany who studies information processing in the brain.

Fighting Blindness

Evotec AG and MaRS Innovation have established a strategic partnership with Dr. Jeremy Sivak to develop a new treatment for glaucoma, a leading cause of irreversible blindness. The treatment will be based on a lipid molecule discovered by Dr. Sivak’s team.
Research Council

Director, Krembil Research Institute (Chair) Donald Weaver
Division Head, Fundamental Neurobiology Peter Carlen
Division Head, Healthcare & Outcomes Research Aileen Davis
Division Head, Brain Imaging & Behaviour - Systems Neuroscience Karen Davis
Division Head, Genetics & Development James Eubanks
Co-Director, Donald K. Johnson Eye Institute Valerie Wallace
Program Medical Director, Arthritis Research Group Robert Inman
Program Medical Director, Krembil Neuroscience Centre Gelareh Zadeh
Research Director, Arthritis Research Group Mohit Kapoor
Chair, Trainee Affairs Committee Mary Pat McAndrews
Vice President and Site Lead, Toronto Western Hospital Janet Newton
Executive Vice President, Science and Research Brad Wouters

Researchers

Brain Imaging & Behaviour Systems - Neuroscience

Senior Scientists
Jonathan Brotchie
Robert Chen
Karen Davis
William Hutchison
Sidney Kennedy
Andres Lozano
Mary Pat McAndrews
David Mikulis
Antonio Strafella

Scientists
Jonathan Downar
Mojgan Hodaie

Affiliate Scientists
Mark Guttman
Clement Hamani
Walter Kucharczyk

Donald K. Johnson Eye Institute

Senior Scientists
Christopher Hudson
Jeremy Sivak
Agnes Wong
Valerie Wallace

Affiliate Scientists
Moshe Eizenman
John Flanagan
Brenda Gallie
Esther Gonzalez

Scientists
Jérémie Lefebvre
Ivan Radovanovic
Taufik Valiante
Liang Zhang

Affiliate Scientists
Magdy Hassouna
Georg Zoidl

Genetics & Development

Emeritus
Charles Tator

Senior Scientists
W Mark Erwin
Nigil Haroon
Lorraine Kalia
Suneil Kalia
Armand Keating

Affiliate Scientist
Sowmya Viswanathan

Health Care & Outcomes Research

Emeritus
Murray Urowitz

Senior Scientists
Elizabeth Badley
Aileen Davis
Dafna Gladman
Nizar Mahomed

Scientist
Anthony Perruccio
Affiliate Scientists
Vinod Chandran
Paul Fortin
Monique Gignac
Rosemary Martino

Patient-Based Clinical Research

Senior Scientist
Anthony Lang

Clinician Investigators
Dimitri Anastakis
Danielle Andrade
Heather Baltzer
Mark Bernstein
Anuj Bhatia
Michael Brent
Daniel Buchman
Frances Chung
Melanie Cohn
Robert Devenyi
Dean Elterman
Alfonso Fasano
Susan Fox
Kenneth Fung
Rajiv Gandhi
Timothy Jackson
Efrem Mandelcorn
Daniel Mandell
Shane McNerney
Roger McIntyre
Renato Munhoz
Laura Passalent
Fayez Quereshy
Y Raja Rampersaud
Aylin Reid
David Rootman
Cheryl Rosen
Allan Slomovic
David Tang-Wai
M Carmela Tartaglia
Zahi Touma
Christian Veillette
Elizabeth Wilcox
Mateusz Zurowski

Clinical Researchers
Elia Abi-Jaoude
Ronit Agid
Jamil Ahmad
Lori Albert
Eduard Bercovici
Jeff Bloom
Arthur Bookman
Richard Brull
Yvonne Buys
Simon Carette
Leanne Casaubon
Rodrigo Cavalcanti
Jaskarndip Chahal
Clara Chan
Vincent Chan
Kenneth Chapman
Ki Jinn Chin
J Roderick Davey
J Martin del Campo
Marc Doucet
Richard Farb
David Frost
Fred Gentili
Peter Giacobbe
Raed Hawa
Robert Iwanochko
Cheryl Jaigobin
Sindhu Johnson
Benjamin Kaasa
Patti Kastanias
Kyle Kirkham
Diana Kljenak
Timo Krings
Richelle Kruisselbrink
Jeffrey Kwong
Johnny Lau
Timothy Leroux
Stephen Lewis
Louis Liu
Meeran Manji
Pirjo Manninen
Rodrigo Mansur
Patricia Marr
Connie Marras
Theodore Marras
Steven McCabe
Victoria McCredie
Rakesh Mohankumar
Ahtsham Niazi
Ivy Oandasan
Allan Okrainec
Daniel Panisko
Sagar Parikh
Kim Partridge
Philip Peng
Vitor Pereira
Anahi Perlas
Arul Prabhu
Rose Puopolo
Sidney Radomski
Sapna Rawal
Shail Rawal
Jorge Sanchez-Guerrero
Paul Sandor
Hemant Shah
Kathleen Sheehan
Frank Silver
Martin Simons
Jeff Singh
Mandeep Singh
James Skembaris
Elizabeth Slow
Roger Smith
Sumeet Sodhi
Peter Tai
Susan Tarlo
Maria Tassone
Graham Trope
Yvonne Tse
Karen Tu
Lashmi Venkatraghavan
Richard Wennberg
Robert Willinsky
David T Wong
Jean Wong
UHN FOUNDATIONS
Colour Your Hair to Conquer Cancer launched in the spring of 2018 as a pilot program at The Princess Margaret Cancer Foundation (PMCF). The program celebrated diversity, inspired creativity and engaged people across the country to be bold, choose their hair colour, donate and challenge others to raise funds for cancer research.

In May 2018—dubbed Colour Your Hair Month—people of all ages, from 202 communities across Canada, coloured their hair to raise money and awareness. Colour events were held throughout the month where people signed up to donate and have their hair coloured by PMCF’s volunteer stylists.

The funds that were raised support PM Cancer Centre’s commitment to leading the way in personalized cancer medicine. This commitment is reflected in PMCF’s six research funding priorities spanning discovery research such as stem cells in cancer and cancer genomics, development of new drugs and therapies such as immunotherapy, and improving supportive care.

“I think it’s a great campaign. It’s fun and it’s something that just about everybody can do,” says Terry Bacinello, PMCF board member and honorary chair of the Colour Your Hair to Conquer Cancer campaign.

Ms. Bacinello said she participated because her family has been touched by cancer and she wanted to give back. She tried different temporary colours throughout the month before deciding on purple, after raising more than $15,000 for vital cancer research.

The program was especially popular on social media. Participants posted photos of their colour transformations with the hashtag #GetYourColourOn and built a colourful community of change makers.

In 2019, PMCF is taking the program to the next level—bigger and better!

Image: (L-R) Drs. David Jaffray and David Wiljer, and two PM Cancer Center staff participating in the event.
The Toronto General & Western Hospital Foundation (TGWHF) set a bold goal to raise $1 billion by March 2018 and surpassed that goal by raising $1.2 billion for UHN. A $100-million gift from the late Peter Munk to his namesake facility pushed the campaign total over the top and was the single largest donation ever made to a Canadian hospital.

In the final year of the campaign, grants made by TGWHF to UHN totalled $81 million, with over 90% supporting research. The donor community stepped forward to fund significant investment in research at the Krembil and TGHRI, including the following:

- Expanding ex vivo technology for use in kidney and liver preservation;
- Developing a digital cardiovascular platform to expand research in precision and genomic medicine in collaboration with the Ted Rogers Centre for Heart Research at the Peter Munk Cardiac Centre;
- Creating a brain bank program to better understand complex interactions of the brain in diseases such as Parkinson disease;
- Acquiring a sequencing machine to analyze blood and tissue samples to detect early stages of arthritis;
- Supporting research on the neuroprotective function of the retina to prevent glaucoma; and
- Establishing the 100th Chair position funded by TGWHF. Chairs have been an integral part of advancing research at UHN.

“Thanks to our wonderful donors, our investigators can pursue the knowledge that can save and sustain lives by building new organs, curing arthritis, discovering treatments to preserve memory, restoring vision, repairing spinal cords, and developing new technologies to heal hearts,” said TGWHF CEO Tennys Hanson.

Image: Peter Munk announcing his historic gift to UHN in September 2017.
UHN Researchers are set to accelerate research on brain disorders, such as Alzheimer disease, epilepsy and Parkinson disease, with a transformational gift of $20 million to the Toronto Rehab Foundation from Walter and Maria Schroeder and their family.

This generous gift established The Walter and Maria Schroeder Institute for Brain Innovation & Recovery at UHN to support a collaborative group of multidisciplinary researchers with expertise in engineering and the clinical neurosciences. Working as a team, they plan to create an environment and a framework to accelerate research into managing and treating brain diseases while delivering discoveries and breakthroughs in neurotechnology.

“The workings of the nervous system and its disorders cannot be understood using a single level of analysis, experimental technique or scientific discipline,” explains TRI Director of Research Dr. Milos Popovic. “Instead, brain research requires multiple levels of analysis from basic neuroscience to bioengineering, computer science and robotics.”

This donation represents the largest ever made to a rehabilitation hospital in Canada. And it helped Toronto Rehab Foundation successfully fulfill its $100 million Where Incredible Happens campaign in support of care and discovery of new technologies, therapies and products to prevent disability, restore function and enable independence.

“The Schroeder’s extraordinary support and commitment is helping TRI to take a quantum leap in advancing collaboration and sparking intellectual excitement that will serve to revolutionize brain science.”

Image: Walter and Maria Schroeder celebrate the announcement of their $20-million gift with the Walter and Maria Schroeder Institute for Brain Innovation & Recovery founding scientists. (Clockwise from Left) Dr. Robin Green, TRI Senior Scientist in cognitive neurosciences; Walter and Maria Schroeder; Dr. Milos Popovic, TRI Director of Research; Dr. Andrea Llonon, geriatric psychiatrist and TRI clinical researcher; Dr. Kathy McGilton, Senior Scientist; and Dr. Alex Mihailidis, TRI Senior Scientist and Barbara G. Stymiest Research Chair in Rehabilitation Technology.
Financials

Research Funding by Source

TOTAL FUNDING $383,083,710

Financial data provided by UHN Research Financial Services. The above figures represent funding revenues (by source) received to support direct and indirect research for the fiscal year ending March 31, 2018. The ‘Government of Ontario’ funding category represents contributions from provincial government programs, including the Ministry of Health and Long-Term Care, and the Ministry of Economic Development, Job Creation and Trade (excluding the Ontario Research Fund – Research Infrastructure program). Funding agencies/organizations that contributed $3,500,000 or more are indicated.

*The Foundations donate to UHN for purposes in addition to supporting research, thus the figures above do not necessarily match UHN’s audited financial statements for each foundation for the fiscal year ending March 31, 2018.
Awards and Distinctions
Selected honours awarded to UHN researchers

Dr. Phyllis Billia
2018 Waterfront Award in Science and Technology

Dr. Richard Cooper
Distinguished Service Award, The Society for Airway Management

Dr. Karen Davis
Fellow, Canadian Academy of Health Sciences

Dr. Geoff Fernie
Member, Order of Canada

Dr. Andrea Furlan
2018–19 Mayday Fellow, The MAYDAY Fund

Dr. Shiphra Ginsburg
2018 Outstanding Achievement Award in the Evaluation of Clinical Competence, Medical Council of Canada

Dr. Dafna Gladman
2018 Carol Nachman Prize, sponsored by the German city of Wiesbaden

Dr. Sherry Grace
Michael L. Pollock Established Investigator Award, American Association of Cardiovascular and Pulmonary Rehabilitation

Dr. Margaret Herridge
2018 Lifetime Achievement Award, American Thoracic Society Assembly on Critical Care

Dr. Brian Hodges
Fellow, Canadian Academy of Health Sciences

Dr. David Jaffray
2018 ASTRO Gold Medal, American Society for Radiation Oncology

Dr. Edward Kassel
2017 Gold Medal, The American Society of Head and Neck Radiology

Dr. Armand Keating
2017 Lifetime Achievement Award, The Canadian Hematology Society

Dr. Murray Krahn
Tier 1 Canada Research Chair in Health Technology Assessment

Dr. Deepali Kumar
AST Achievement Award - Clinical Science Investigator, American Society of Transplantation

Dr. Jeffrey Lipton
2018 Brian Druker Award Recognizing Extraordinary Care in Chronic Myelogenous Leukemia (CML), Canadian CML Network
Dr. Kristin Musselman
Early Researcher Award, Ontario Ministry of Economic Development, Job Creation and Trade

Dr. Pamela Ohashi
2018 Robert L. Noble Prize, Canadian Cancer Society

Dr. Milos Popovic
2018 Jonas Salk Award, March of Dimes Canada

Dr. Trevor Pugh
2018 Stand Up To Cancer Phillip A. Sharp Innovation in Collaboration Award, Stand Up To Cancer
Tier 2 Canada Research Chair in Translational Genomics

Dr. Milica Radisic
2018 Women of Distinction Award, YMCA Toronto

Dr. Michael Sefton
Officer, Order of Canada

Dr. Frances Shepherd
2018 Canada Gairdner Wightman Award

Dr. Darrell Tan
2018 CAHR—CANFAR Excellence in Research Award for Clinical Sciences, CAHR—CANFAR

Dr. Susan Tarlo
2018 John M. Peters Award, American Thoracic Society Assembly on Environmental, Occupational and Population Health

Dr. Paaladinesh Thavendiranathan
Early Researcher Award, Ontario Ministry of Economic Development, Job Creation and Trade

Drs. Rodger Tiedemann
2018 William E. Rawls Prize, Canadian Cancer Society (co-recipient)

Dr. Michael Tymianski
Tier 1 Canada Research Chair in Translational Stroke Research (renewal)

Dr. Sara Vasconcelos
Early Researcher Award, Ontario Ministry of Economic Development, Job Creation and Trade

UHN Multi-Organ Transplant Program
AST Innovation Award, American Society of Transplantation

Dr. Gelareh Zadeh
2018 William E. Rawls Prize, Canadian Cancer Society (co-recipient)
Committees

Biomedical Research
Ethics Board: Panel A
Alan Barolet
Andria Bianchi
Sharon Braganza
Kim Cadario
Derek Cathcart
Robert Cusimano
Seema David
Nicole Deiana
Erin Dobbelsteyn
James Downar
Nicole Feldman
Peter Giacobbe
Gillian Kafka
Matthew Kim
Jane Lui
Connie Marras (Vice Chair)
Kevin Rodrigues
Heather Sampson
Morris Sherman (Chair)
Carl Virtanen
Jean Wang
Duminda Wijeysundera
Noe Zamel

Biomedical Research
Ethics Board: Panel B
Ian Arnold
Alan Barolet
Ruth Anne Baron
David Barth (Vice Chair)
Daniel Buchman
David Cherney
Sean Cleary
Natasha Danson
Nigil Haroon
Maidy Hassouna
Michael Hutcheon
Roger McIntyre
Ali Naraghi
Todd Orvitz
John Parker
Ron Seto
Ruby Rajendra Shanker
Morris Sherman (Chair)
Samantha Sonshine
Lorisa Stein
Naomi Visanji
Hannah Walters-Vida
Cancer Clinical Research Unit Executive Committee
Penelope Bradbury
James Brierley
Pamela Degendorfer (Vice Chair)
Anthony Fyles
Brefni Hannon
Jin-Hyeun Huh
Krystal Internicola (ex officio)
Jennifer Knox
Amit Oza (Chair)
Michael Reedijk
Patrik Rogalla
Pamela Savage
Aaron Schimmer
Susanna Sellmann
Theodorus van der Kwast

Cancer Clinical Research Unit Management Committee
Elisa Baioff
Liesa Baumann
Rosetta Belcastro
Chantale Blattler
Cynthia Bocaya
Bholy Chaudhary
Helen Chow (Interim)
Heather Cole
Pamela Degendorfer (Chair)
Anna Dodd
Jeffrey Doi
Marcia Flynn-Post
Julie Gundry
Mani Kang
Jennifer Li
Jennifer Lister
Nicole Luimes (Interim)
Lisa Murphy
Gerard Paras (Recorder)
Michele Petrovic
Lindsay Philip
Jesus Giovanni Piza Rodriguez
Tracey Powell
Menaka Pulandiran
Makilpriya Ramachandran
Kendra Ross
Susanna Sellmann
Anuj Singla
Vanessa Speers
Dorothy Tam (Interim)
Marissa Tang Fong
Ruth Turner
Smitha Udagani
Heidi Wagner

Cancer Registry and Data Access Committee
Niki Agelastos (Committee Secretariat)
Penelope Bradbury
James Brierley (Chair)
Carol Cheung
Darlene Dale (Co-Chair)
Alexandra Easson
Calven Eggert
David Goldstein
Joelle Helou
John Kuruvilla
Tony Panzarella
Bayardo Perez-Ordonez

Clinical Studies Quality Committee
Charles Chan (Co-Chair)
Jordan Feld
John Floras
John Granton
Ann Heesters
Jin-Hyeun Huh
Deepali Kumar
Paul MacPherson
Patricia North
Paul Oh
Amit Oza
Patrik Rogalla
Katie Roposa
Franco Rossetto
David Urbach
Sharon Walmsley
Brad Wouters (Co-Chair)

Data Safety Monitoring Board
Mary Anne Chappell
Douglas Chepeha
Heather Cole (ex officio)
Kathy Han
Krystal Internicola (ex officio)
John Kuruvilla
Srikala Sridhar (Chair)
Ruth Turner
Jessica Weiss

Krembil Appointments Committee
Peter Carlen
Aileen Davis
Karen Davis
James Eubanks
Andres Lozano (Chair)
Donald Weaver

Krembil Clinician Investigator Appointments Committee
Mary Pat McAndrews
Y Raja Rampersaud
Antonio Strafella
Donald Weaver (Chair)

Krembil Space Committee
Aileen Davis
Karen Davis
James Eubanks (Chair)
Ian McDermott
Frank Vidic
Valerie Wallace
Donald Weaver
Joan Wither

Krembil Trainee Affairs Committee
Shabana Amandal Ali
Azin Ebrahim Amini
Anna Badner
Jonathon Chio
Leanne Da Costa
Poulami Datta
Helal Endisha
Nisha Ganeswaram
Alexandre Guet McCreight
Peter Hung
William Hutchison
Amy Ma
Mary Pat McAndrews (Chair)
Carley McPherson
Krithika Muthukumar
Samira Patel
Kaitlyn Price
Cricia Rinchon
Anton Rogachov
Alessandra Tuccitto
Manoj Vasudeva
Julie Wan
Sidrah Waseem
Joan Wither
Gah-Jone Won
Meital Yerushalmi

Oncology Research Ethics
Board: Panel C
Eitan Amir
Kyaw Aung
Jennifer Bell
Alejandro Berlin
Hal Berman
Andria Bianchi
Marcus Butler
Michael Crump
Stephanie DeLuca
Jaime Escallon
Josee-Lyne Ethier
Ronald Feld
Eli Fellman
Anthony Fyles
Jed Gross
Robert Hamilton
Anna Heesters
Jack Holland (Chair)
Dennis Kim
Belling Leung
Carmen Li
Manjula Maganti
Caroline McNamara
Frank Michels
Rebecca Prince
Nikolina Radulovich
Albiruni Razak
Katherine Renison
Gordon Robinson
Tara Rosewall
Master D. Short
Naoto Hirano
Michael Hoffman
Linda Penn
Brian Raught
Aaron Schimmer (Chair)
Patrick Yau

PM Core Facility &
Equipments Committee
Laurie Ailles
Hansen He
Trevor Pugh
Brian Raught
Ming-Sound Tsao
Brian Wilson
Patrick Yau
Gang Zheng (Chair)

PM New Faculty Search
Committee
David Brooks
Razqallah Hakem
Thomas Kistlinger
Marianne Koritzinsky
Robert Rottapel
Aaron Schimmer
Vuk Stambolic (Chair)

PM Research Space
Committee
Naoto Hirano
Michael Hoffman
Linda Penn
Brian Raught
Aaron Schimmer (Chair)
Patrick Yau

Radionuclide Radiation
Safety Committee
Shelley Belford
Jonathan Brothie
Gina Capone (Co-Chair)
Perry Chong
Christina Ciapanna
Mary Fountas
Judith Gabrys (Co-Chair)
Mihaela Ginj
David Green
Norman Iscove
Philip Kenney
Jean Nash
Deborah Scollard
John Shannon

Research Biosafety
Committee
Lorraine Kalia
Jeanette MacLean (ex officio)
Badru Moloo (ex officio)
Gilbert Privé
Carly Rebele
John Shannon (Chair)

Research Risk and Audit
Committee
Allison Aab
Chip Campbell
Jennifer Campos
Helen Chan
Steven Corfe
Suranga Fernando
Thomas Goldthorpe
Tony Gonzales
Tula Kalliomaki
Maria Kannu
Alexander Karabanow
Sophia Yue Li
Amy Ma
Paul MacPherson
Ian McDermott
Carley McPherson
Arjeta Meneri
Badru Moloo
Lisa Murphy
Anthony Palma
Katie Roposa (Chair)
Evelina Rutkowski
Gianfranco Scipione
Anita Sengar
John Shannon
Michael Voith
Lois Ward
Brad Wouters
Patrick Yau

TGHRI Appointments
Committee
David Cherney
Angela Cheung
Myron Cybulsky
Jason Fish (Chair)
Anna Gagliardi
Margaret Herridge
Mansoor Husain
Murray Krahn
Robert Nolan
Minna Woo
Brad Wouters

TRI Junior Scientists’
Support & Mentorship
Committee
Tracey Colella
Susan Jaglal (Chair)
Avril Mansfield
Lois Ward
Azadeh Yadollahi

TRI Leadership
Committee
Jennifer Campos
Susan Jaglal
Milos Popovic (Chair)

TRI Scientists’
Productivity &
Promotions Committee
Susan Jaglal
Paul Oh
Milos Popovic (Chair)

TRI Standard Operating
Procedures Committee
Jennifer Campos (Chair)
Andrew Huntley
Susan Jaglal
Behrang Keshavarz
Anthony Palma
Milos Popovic
Lois Ward

TRI Students’ Support &
Mentorship Committee
Nisha Ganeswaran
Susan Jaglal (Chair)
Lois Ward

TRI Team Leaders’
Committee
Mark Bayley
Angela Colantonio
B Catharine Craven
Tilak Dutta
Robin Green
Susan Jaglal
Owen Lyons
Katherine McGilton
Alex Mikhailidis
Paul Oh
Milos Popovic (Chair)
Catriona Steele
Yana Yunusova
External Sponsors
Thank you to our partners

AACR International-Canada
Abbott
Abbvie
Acerta Pharma
Acetylon Pharmaceuticals
Acorda Therapeutics
Actelion Pharmaceuticals
ActiveO
Adaptimmune
Aeglea Biotherapeutics
AGA Medical
Agensys
AGE-WELL
Agios Pharmaceuticals
AKR Development
Alberta College of Speech-Language Pathologists and Audiologists
Alberta Health Services
Alexion Pharmaceuticals
Alfred Health
Aliion Pharmaceuticals
Allergan
AllerGen
Alliance For Lupus Research
Allon Therapeutics
Alyxam Pharmaceuticals
Alpha Cancer Technologies
Alzheimer Society Of Canada
Alzheimer’s Association
Ambit Biosciences
American Association for Cancer Research
American Association for Thoracic Surgery
American Association for the Study of Liver Diseases
American Association of Neurological Surgeons
American Cancer Society
American College of Rheumatology
American Medical Systems
American Society of Clinical Oncology
American Society of Echocardiography
American Society of Hematology
American Society of Nephrology
American Society of Transplant Surgeons
Amgen
Anesthesia Patient Safety Foundation
Anthera Pharmaceuticals
AOSpine
ApoPharma
Aptose Biosciences
Arbor Research Collaborative for Health
Assessment of SpondyloArthritis Society
Associated Medical Services
Astellas Pharma
Astex Pharmaceuticals
AstraZeneca
Atuka
Aurinia Pharmaceuticals
Avenix Pharmaceutical
Avicanna
AVROBIO
B+S MULTIDATA
Bard Canada
Bavarian Nordic
Baxter
Baycrest
Bayer
BD
Beckman Coulter
Bill & Melinda Gates Foundation
BioCanRx
Biocompatibles UK
Biogen
Biosense Webster
BlueRock Therapeutics
Boehringer Ingelheim
Boston Biomedical
Boston Children’s Hospital
Boston Medical Center
Boston Scientific
Brain & Behavior Research Foundation
Brain Aneurysm Foundation
Brain Canada
BresoTEC
BrightFocus Foundation
Bristol-Myers Squibb
B.C. Cancer
California Institute for Regenerative Medicine
Canada Foundation for Innovation
Canada Health Infoway
Canada Research Chairs
Canadian Allergy, Asthma and Immunology Foundation
Canadian Anesthesiologists’ Society
Canadian Arthritis Network
Canadian Association for the Study of the Liver
Canadian Association of Psoriasis Patients
Canadian Association of Radiation Oncology
Canadian Breast Cancer Foundation
Canadian Cancer Society Research Institute
Canadian Cancer Trials Group
Canadian Cardiovascular Society
Canadian Critical Care Society
Canadian Diabetes Association
Canadian Foundation for AIDS Research
Canadian Foundation for Dietetic Research
Canadian Hematology Society
Canadian Initiative for Outcomes in Rheumatology Care
Canadian Institutes of Health Research
Canadian Liver Foundation
Canadian National Transplant Research Program
Canadian Occupational Therapy Foundation
Canadian Partnership Against Cancer
Canadian Partnership for Stroke Recovery
Canadian Prostate Cancer Research Initiative
Canadian Psychological Association
Canadian Radiation Oncology Foundation
Canadian Rheumatology Association
Canadian Society of Hospital Pharmacists
Canadian Society of Plastic Surgeons
Canadian Society Of Transplantation
Canadian Urologic Oncology Group
Canadian Urological Association
Canadian Urology Research Consortium
Cancer Care Ontario
Cancer Research Institute
Cancer Research Society
CannScience Innovations
Caresstream Health
Caris Life Sciences
Celgene
Celixir
Celsius
Centre for Addiction and Mental Health
Centre for Probe Development and Commercialization
Centre hospitalier de l’Université de Montréal
Cervical Spine Research Society
Chang Gung Memorial Hospital
Christopher & Dana Reeve Foundation
Cidara Therapeutics
Civitas Therapeutics
Cleave Biosciences
External Sponsors

Nimbus
NoNO Inc.
North American Spine Society
NOVADAQ Technologies
Novartis
Novo Nordisk
NPS Pharmaceuticals
NSABP Foundation
Nucleix
Octapharma
Olympus
Onconova Therapeutics
Onkocellular
Ontario Association of Medical Laboratories
Ontario Brain Institute
Ontario Centre Of Excellence
Ontario Clinical Oncology Group
Ontario HIV Treatment Network
Ontario Institute for Cancer Research
Ontario Institute for Regenerative Medicine
Ontario Lung Association
Ontario Mental Health Foundation
Ontario Neurotrauma Foundation
Ontario Rett Syndrome Association
Ontario Telemedicine Network
Ontario Thoracic Society
Onyx Pharmaceuticals
Osteoporosis Canada
Otsuka Canada Pharmaceutical
Ottawa Hospital Research Institute
Ovarian Cancer Canada
Oxford Immunotec
PAREXEL
Parkinson Canada
Parkinson’s Foundation
Partners HealthCare
Petro-Canada Lubricants
Pfizer
Pharmaceutical Product Development Philips
Phoenicia BioSciences
Phonak
Photopharmica
Physicians’ Services Incorporated Foundation
Physiotherapy Foundation of Canada
Pierre Fabre
PKD Foundation
Polynoma
Population Health Research Institute
PROCEPT BioRobotics
Progenics
Promedior
Prometic Life Sciences
Promobilia Foundation
Prostate Cancer Canada
Protagen
ProteoMediX
Proteomic Methods
Proteon Therapeutics
Prothena
Public Health Agency of Canada
PuraPharm
QIAGEN
Queen Mary University Of London
Queen’s University
Ra Pharma
Radiological Society of North America
Raysearch Laboratories
Repro Pharma
Regeneron Pharmaceuticals
Regulus Therapeutics
Reiley Pharmaceuticals
Revalessio
Rick Hansen Foundation
Rick Hansen Institute
Roche
Royal College of Physicians and Surgeons of Canada
Rubius Therapeutics
Saint Elizabeth Health Care
Samuel Waxman Cancer Research Foundation
Sanofi
Sarcoma Cancer Foundation of Canada
Savoy Foundation
Schering-Plough
Scientus Pharma
Sepsis
Sequana Medical
Sesen Bio
Shionogi
Shire
Siemens
Smiths Medical
Society of American Gastrointestinal and Endoscopic Surgeons
Spartan Bioscience
SpectraCure
Spencer Foundation
Spring Bank Pharmaceuticals
St. Joseph’s Healthcare Hamilton
St. Jude Medical
St. Michael’s Hospital
Stanley Medical Research Institute
State University of New York
Stem Cell Network
Steminent Biotherapeutics
Stemline Therapeutics
Stryker
Sunnybrook Health Sciences Centre
Susan G. Komen
Takara Bio
Takeda Oncology
TauRx Therapeutics
TD Bank Group
Canadian Frailty Network
Ted Rogers Centre for Heart Research
Tekmira Pharmaceuticals Corporation
Terry Fox Research Institute
Terumo
Tesaro
Thalassemia Foundation Of Canada
The Americas Hepato-Pancreato-Biliary Association
The Arthritis Society
The Benjamin Foundation
The Chinese University of Hong Kong
The Foundation of the American Society of Neuroradiology
The Hospital For Sick Children
The MAYDAY Fund
The Michael J. Fox Foundation for Parkinson’s Research
The Princess Margaret Cancer Foundation
The VitaminD Society
The W. Garfield Weston Foundation
Theralase
Thoratec
Tourette Syndrome Association
Tolero Pharmaceuticals
Toronto Central Local Health Integration Network
Toronto Dementia Research Alliance
Toronto General & Western Hospital Foundation
Toronto General Hospital Cardiovascular Surgical Association
Toronto Rehab Foundation
Toshiba Medical Systems
Tourette Syndrome Association
Trillium Therapeutics
Triphase Accelerator
UCB
United States Department of Defense
University of Alberta
University of British Columbia
University of Calgary
University of Chicago
University of Florida
University of Pennsylvania
University of Texas
University of Toronto
University of Washington
University of Western Australia
University of Zurich
Vertex Pharmaceuticals
Waters Technologies Corporation
Wings for Life
Women’s College Hospital
Wright Medical Technology
XIVVO Perfusion
York University
International Research Advisory Board

Samuel Weiss, PhD (Chair)
Professor, Departments of Cell Biology & Anatomy and Physiology & Pharmacology, University of Calgary;
Director of the Hotchkiss Brain Institute

Philip E Branton, OC, PhD, FRSC
Professor Emeritus, Department of Oncology and Biochemistry; Gilman Cheney Professor, Rosalind and Morris Goodman Cancer Research Centre; McGill University

Thomas Rockwell Mackie, PhD
Professor Emeritus, Medical Physics and Human Oncology, University of Wisconsin;
Director, Medical Devices Focus Area, Morgridge Institute for Research

Lynne Warner Stevenson, MD
Professor of Medicine; Program Director, Advanced Heart Failure Fellowship Program; Vanderbilt University Medical Center

John E Wennberg, MD, MPH
Active Professor Emeritus of Community & Family Medicine, Peggy Y Thomson Professor Emeritus in Evaluative Clinical Sciences and Director Emeritus and Founder, The Dartmouth Institute for Health Policy & Clinical Practice

Research Committee Board of Trustees

Independent Trustees (Voting)
Lawrence Pentland (Chair), Janet Rossant, Barbara Stymiest

University of Toronto Appointee (Voting)
Trevor Young

Ex-officio Trustees (Voting)
Joy Richards, Kevin Smith

Others (Voting)
Janet Bannister, Sean Boyd, Tom Ehrlich, Alan Menkes, John O’Grady

Ex-officio Non-Trustees (Non-voting)
Darlene Dasent, John Granton, Brian Hodges, Brad Wouters

Disclaimers

Publications, Personnel, Research Committees Publication data is for the 2017 calendar year and provided by UHN Research Program Planning & Analysis. Publications jointly authored by investigators at multiple UHN institutes are counted only once in the UHN total. Researchers with more than one affiliation within an institute, or between institutes, are only included once in the total count. Some figures may be rounded and/or may include data not represented in institute data. Leadership data is provided by UHN institute Business Managers and is accurate as of March 31, 2018. Metrics for each institute were calculated by considering data for all researchers, which include Clinical Researchers or members of the Cancer Clinical Research Unit (CCRU) as applicable. Please note that while Clinical Researchers and members of the CCRU are not subject to UHN’s scientific and performance reviews and are considered to be non-appointed researchers, their research funding and publications are included in UHN and research institute counts. Clinical Researchers are defined as UHN staff that were either first or last author on at least one publication in the 2017 calendar year OR owner of a UHN research account that spent money in the 2017/2018 fiscal year. While Clinical Researchers may be affiliated with a UHN research institute, they do not hold a formal research appointment and are assigned to a specific institute based on their site location. In addition, they are not postdoctoral fellows, clinical fellows or scientific staff employed by appointed researchers.

Trainees Institute trainee counts are accurate as of August 1, 2018 and were provided by UHN’s Office of Research Trainees. Counts reflect trainees who spend more than 50% of their time at UHN and who are supervised by researchers with a primary UHN research appointment.

Space Data is provided by UHN Facilities Management - Planning, Redevelopment & Operations (FM-PRO) and is based on space audited by March 31, 2018 across UHN sites. Core facilities and Research Solutions and Services spaces are not included in institute space totals.

Production Credits This report is published by the Office of the Executive Vice President, Science and Research, UHN. Graphic design, writing and production by UHN’s Strategic Research Initiatives Development Team (StRIDE).

Institute Data The ‘external funding’ value in each snapshot represents total research project funding received by investigators that are primarily affiliated with each specific institute in the 2017/18 fiscal year. The number of researchers listed include appointed and non-appointed researchers.