RESEARCH REPORT
Contents

Investing in Future Health - From the President & CEO 1
Strong Funding Based on Strong Science - From the VP 2
The Year in Review 4
Ontario Cancer Institute 6
Toronto General Research Institute 8
Toronto Western Research Institute 10
Features 12
Breakthroughs 18
Funding 30
Committees/Services 32
Analysis of Research Activity 35
Endowed Chairs 36
International Research Advisory Board 37

Total Number of Researchers 468
- Senior Scientists 160
- Scientists 54
- Affiliate Scientists 47
- CSRC Members 207

Total Number of Trainees 770
- Fellows 397
- PhD Students 81
- Other Graduate Students 292
- Staff 996

Research Space 480,000 sq ft
Publications 1293
Total Research Funding $155,976,000
University Health Network in 2004 is an amazing place to be, and UHN Research is one of the things that makes it so.

Patient care, education, and research are all highly interconnected. UHN attracts some of the best clinicians—because it offers the opportunity to combine clinical practice with research. UHN attracts many patients from across Ontario due to high standards of care and the opportunity to participate in groundbreaking clinical research—all because of the thriving research community here.

The UHN strategic plan, Strategic Directions 2011, outlines ambitious targets for all of us at UHN. As this Research Report documents, Research is making great strides towards these targets. This year saw new buildings, new institutes, new initiatives and new partnership ventures in Research.

None of this would be possible without the hard work and commitment of our researchers and research staff and their partners in the government, community and private sector. From the research funding flowing from federal, provincial and international agencies, to the community volunteers who sit on our boards and committees, to the enormously dedicated work of the three UHN Foundations—the Arthritis & Autoimmunity Research Centre Foundation, the Princess Margaret Hospital Foundation and the Toronto General & Western Hospital Foundation—we owe an enormous debt of thanks to many groups for their ongoing support.

An investment in biomedical research is an investment in future health. UHN has much to be proud of in this area. Please read on to learn more.

Tom Closson
President and Chief Executive Officer
University Health Network
Research has had an amazing year in 2003/04. This year for the first time our research budget topped $150M, with strong support from provincial and national agencies including an all-time high of $20.5M from the national Canadian Institutes of Health Research, nearly $10M from the National Cancer Institute of Canada and $6M from the new Ontario Cancer Research Network. These figures demonstrate yet again the scientific excellence of our scientists and the members of their research programs. They also show how reliant we are on a strong research funding environment to fuel research at UHN and how this support is key in realizing the research achievements that generate advances in patient care at Canada’s largest hospital.

Topping off the year came the announcement in March that our researchers won $36.4M in infrastructure funding from federal and provincial sources to launch three new centres—the Advanced Medical Discovery Institute, the Centre for Research in Immune Tolerance in Transplantation, and the STTARR Centre in radiation medicine. We are tremendously proud of this achievement and it will prove critical in developing our research capacity in key areas in the next few years.

In 2003/04 UHN’s list of scientific accomplishments was impressive. As a hospital-based research institute, our programs of inquiry span the spectrum from fundamental understanding of molecules and cells to mission-oriented, disease-specific clinical research. Our discoveries reflect this diversity: the first approved treatment for SARS; a multi-drug protocol that extends the lives of lung cancer patients; identification of a leukemia stem cell; discovery of a new mechanism that controls brain cell death during stroke; and a novel molecular switch that controls the process of inflammation. Breakthroughs like these hold the promise of improving the lives of our patients today or in the not too distant future.

UHN’s achievements rest on the achievements of our individual investigators. UHN researchers have received many individual honours this year, achieving global and national renown. Some of these include:

- The Paul Ehrlich and Ludwig Darmstaedter Prize, the highest prize awarded in Germany in the field of medicine, awarded to Dr. Tak Mak
- The appointments of Dr. Peter St George-Hyslop as Fellow...
FROM THE VICE PRESIDENT

of the Royal Society and Dr. John Dick as a Fellow of the Royal Society of Canada

- The naming of Drs. Jim Woodgett and Peter St George-Hyslop as International Research Scholars by the Howard Hughes Medical Institute

- The appointments of Drs. Cheryl Arrowsmith, Dan Drucker and Mitsu Ikura as Tier I Canada Research Chairs and Dr. Peter Cheung as a Tier II Canada Research Chair

- The Society for Thoracic Surgeons’ Earl Bakken award for lifetime scientific achievement, awarded to Dr. Richard Weisel

- Honorary degrees from the University of Toronto awarded to Drs. Jim Till and Ernest McCulloch, who were also this year elected to the Canadian Medical Hall of Fame

- Dr. Tony Lang, who received the American Academy of Neurology's Movement Disorders Research Award

Finally, this year saw progress in three significant new ventures. The Toronto Medical Discovery Tower, critical for increasing research space capacity, neared completion this year and we are currently awaiting handover of the shell space for UHN’s interior fit-out and occupancy in 2005. UHN Global Ventures was launched this year under the leadership of Dr. Brian Barber. This R&D interface will capitalize on UHN’s strengths in basic, translational and clinical research to accelerate innovations further down the development pipeline and capture more value for UHN’s research investment. A third new venture owes a great deal to the Princess Margaret Hospital Foundation, which was a driving force behind its development. The Institute for Breast Cancer Research, opened this year under the leadership of Dr. Tak Mak, is an exciting development in the field and will no doubt be the focus of many future pieces in this report.

All told, the year 2003/04 was an important year in the growth of UHN’s research enterprise. And, as in previous years, I’d like to close by offering my thanks and congratulations to all who contributed to UHN Research’s success in 2003/04: our scientists and clinician-scientists, our technical and support staff, our students and fellows, our colleagues in the Toronto Academic Health Sciences Network, and, most especially, our Foundations.

Christopher J. Paige, PhD
Vice President, Research
University Health Network
The Year in Review

DECEMBER 2003

The second meeting of the UHN International Research Advisory Board brings together four internationally-recognized scientists in high-impact areas to meet with various UHN constituencies including researchers, platform leaders, medical program leaders, foundations and hospital and research leadership.

JANUARY 2004

The UHN Platform planning process, Phase II of *The Future Project*, launches. Led by Platform Chairs, the nine-month process aims to define visions and new tactical plans for the four UHN Platforms: Genes, Proteins & People, Health Informatics, Medical Technology Innovation, and Regenerative Medicine.

MARCH 2004

The Research strategic plan entitled *The Future Project* is approved by the UHN Board of Trustees.

Three teams of UHN researchers celebrate the announcement of awards totaling nearly $18.2M from the Canada Foundation.

NOVEMBER 2003

The second annual UHN Research Day held at a Toronto hotel provides a chance for researchers to mingle and learn about projects and findings from UHN colleagues. Keynote speaker was Dr. Catherine Verfaille, Director of the Stem Cell Institute at the University of Minnesota. Also announced at the event was the recipient of the inaugural UHN Inventor of the Year award: Dr. Kevin Kain, honoured for his work in new malaria treatments.
for Innovation to build new infrastructure to study the mechanisms of cancer, radiation medicine and immune tolerance. These awards were later matched by the Ontario government (Ministry of Economic Development and Trade/Ontario Innovation Trust), bringing funding to a total of $36.4M.

APRIL 2004

Dr. Peter St George-Hyslop becomes Director of the Toronto Western Research Institute. His research in determining the genetic and molecular processes underlying neurodegenerative diseases, particularly Alzheimer’s disease, has had a major impact in the field and has been recognized by many national and international awards.

JUNE 2004

Integrating basic, translational and clinical research, the new $125M Institute for Breast Cancer Research launches on June 2, 2004. Director Dr. Tak Mak begins assembling Canada’s first scientific team to develop new improved drugs and therapies to conquer breast cancer.

MAY 2004

Dr. Brian Barber is recruited to helm UHN Global Ventures, a new initiative promoting commercialization and partnership with UHN Research on an international level.

A significant milestone is reached as the new Toronto Medical Discovery Tower is topped off in a short ceremony held 15 floors above ground. UHN is eagerly anticipating the hand-over of the building for fit-out starting October 2004.
Ontario Cancer Institute
Princess Margaret Hospital

Research Space 222,000 sq ft
Publications 370
Total External Funding $55,000,000

OCI includes the Advanced Medical Discovery Institute and the Institute for Breast Cancer Research

STAFF AND STUDENTS

Total Number of Researchers 137
Senior Scientists 48
Scientists 17
Affiliate Scientists 4
CSRC Members 69

Total Number of Trainees 350
Fellows 164
PhD Students 45
Other Graduate Students 141
Staff 397

Cancer Informatics
SENIOR SCIENTISTS
Asa, Sylvia
Gallie, Brenda

SCIENTIST
Jurisica, Igor

Cell & Molecular Biology
SENIOR SCIENTISTS
Barber, Dwayne
Benchimol, Sam
Isocove, Norman
Lepock, James
Mak, Tak
Manoukian, Armen
McCulloch, Ernest
Messner, Hans
Miller, Richard
Minden, Mark
Ohashi, Pam
Paige, Christopher
Penn, Linda
Squire, Jeremy
Tsao, Ming

SCIENTISTS
Hakem, Razq
Harrington, Lea
Schimmer, Aaron
Vaziri, Homayoun
Wells, Richard
Yeh, Wen-Chen

AFFILIATE SCIENTISTS
Bradley, Grace
Kamel-Reid, Suzanne

Experimental Therapeutics
SENIOR SCIENTISTS
Hedley, David
Hill, Richard
Hunt, John
Khokha, Rama
Liu, Fei-Fei
Moore, Malcolm
Rauth, Michael
Rottapel, Robert
Stewart, Keith
Tannock, Ian
Whitmore, Gordon
Woodgett, Jim

SCIENTISTS
Bristow, Robert
Cheung, Peter
Done, Susan
Koch, Anne
Medin, Jeffrey
Stambolic, Vuk
Tillier, Elisabeth
Vallis, Katherine

AFFILIATE SCIENTIST
Leong, Weh-Liang

Medical Physics
SENIOR SCIENTISTS
Jaffray, David
Sherar, Michael
Vitkin, Alex
Wilson, Brian

SCIENTISTS
Lilge, Lothar
Siewerdsen, Jeff
Molecular & Structural Biology
SENIOR SCIENTISTS
Arrowsmith, Cheryl
Chakrabarty, Avi
Edwards, Aled
Garlëpy, Jean
Ikura, Mitsu
Ottensmeyer, Peter
Pai, Emil
Prvé, Gilbert
Richardson, Christopher
Rose, David
Gryfe, Robert
Hodgson, David
Howell, Doris
Irish, Jonathan
Kane, Gabrielle
Kim, John
Knox, Jennifer
Krzyzanowska, Monika
Laperriere, Norm
Leighl, Natasha
Levin, Wildred
Lipa, Joan
Lipton, Jefferey
Manchul, Lee
Mason, Warren
McCreary, David
McLean, Michael
Mikael, Joseph
Milošević, Michael
O' Sullivan, Brian
Oza, Amit
Paul, Narinder
Payne, David
Pierre, Andrew
Quirt, Ian
Reece, Donna
Ringash, Jolie
Rosen, Barry
Rotstein, Lorne
Shaw, Patricia
Shepherd, Frances
Simpson, Rand
Siu, Lillian
Sturgeon, Jeremy
Sun, Alexander
Swallow, Carol
Tkachuk, Doug
Trachtenberg, John
Trudel, Suzanne
Tsang, Richard
Waldron, John
Warde, Padraig
Warr, David
Wells, Woodrow
Wong, Rebecca
Zimmermann, Camilla

NB—where members have more than one affiliation, only one affiliation is indicated
Toronto General Research Institute
Toronto General Hospital

STAFF AND STUDENTS

Total Number of Researchers 198

Senior Scientists 70
Scientists 25
Affiliate Scientists 29
CSRC Members 75

Total Number of Trainees 291

Fellows 159
PhD Students 25
Other Graduate Students 107
Staff 422

Behavioural Sciences & Health

SENIOR SCIENTISTS

Devins, Gerald
Flint, Alastair
Kaplan, Allan
Katz, Joel
Olmsted, Marion
Rodin, Gary
Stewart, Donna

SCIENTISTS

Carter, Jacqueline
Esplen, Mary Jane
Jones, Jennifer
Nolan, Robert
Regehr, Glenn

AFFILIATE SCIENTISTS

Abbey, Susan
Baker, Brian
Davis, Caroline
de Groot, Janet
Gagliese, Lucia
Grace, Sherry
Hamstra, Stanley
Heslegrave, Ron
Hodges, Brian
Irvine, Jane
Katz, Mark
McVey, Gail
Reid, Graham
Ritvo, Paul
Robinson, Gail
Styra, Rima
Woodside, Blake

Cell & Molecular Biology

SENIOR SCIENTISTS

Backx, Peter
Berger, Stuart
Cybulsky, Myron
Dick, John
Drucker, Daniel
Esholtz, Harry
Fantus, George
Fish, Eleanor
Gorczynski, Reginald
Gottlieb, Avrum
Grant, David
Johnston, Wayne

SCIENTISTS

Belsham, Denise
Berger, Stuart
Cattral, Mark
Cybulsky, Myron
Dick, John
Esholtz, Harry
Fantus, George
Fish, Eleanor
Gorczynski, Reginald
Gottlieb, Avrum
Grant, David
Johnston, Wayne

AFFILIATE SCIENTISTS

Branch, Donald
Clark, David
Cole, Edward
Ojha, Matadial
Wilson, Gregory

Clinical Decision-Making & Health Care

SENIOR SCIENTISTS

Bombardier, Claire
Eysenbach, Gunther
Jadad, Alex
Nagle, Gary

SCIENTISTS

Alibhai, Shabbir
Krahn, Murray
Maetzel, Andreas
Urbach, David
Wilson, Kumanan

Research Space 153,000 sq ft
Publications 596
Total External Funding $45,700,000

Langille, Lowell
Levy, Gary
Liu, Mingyao
Phillips, James
Rotstein, Ori
Rubin, Barry
Schuh, Andre
Whiteside, Catherine
Zackenhaus, Eldad
Zhang, Li

AFFILIATE SCIENTISTS

Branch, Donald
Clark, David
Cole, Edward
Ojha, Matadial
Wilson, Gregory

Clinical Investigation & Human Physiology

SENIOR SCIENTISTS
- Allard, Johane
- Bradley, Douglas
- Catrnan, Daniel
- Detsky, Allan
- Downar, Eugene
- Floras, John
- Goss, Paul
- Kucharczyk, Walter
- Lewis, Gary
- Logan, Alexander
- Marshall, John
- Miller, Judith
- Olivier, Nancy
- Phillipson, Eliot
- Steiner, George
- Walmley, Sharon
- Waxman, Menashe
- Webb, Gary
- Zamel, Noe

SCIENTISTS
- Cheung, Angela
- Reilly, Raymond
- Wong, Florence

Genomic Medicine

SENIOR SCIENTISTS
- Cole, David
- Downey, Gregory
- George, Susan
- Hogg, David
- Kain, Kevin
- MacDonald, Kelly
- Pei, York
- Siminovitch, Kathy
- Sole, Michael

SCIENTISTS
- Osborne, Lucy

Experimental Therapeutics

SENIOR SCIENTISTS
- Keating, Armand
- Kelvin, David
- Keshavjee, Shaf
- Li, Ren-Ke
- Lindsay, Thomas
- Liu, Peter

Clinical Studies Resource Centre

MEMBERS
- Ali, Mohamed
- Bacchus, Maria
- Bargman, Joanne
- Beattie, Scott
- Borger, Michael
- Bradley, John
- Brill, Vera

NB-where members have more than one affiliation, only one affiliation is indicated

RESEARCH COUNCIL

DIRECTOR
- Keith Stewart

BEHAVIOURAL SCIENCES & HEALTH
- Gary Rodin

CELL & MOLECULAR BIOLOGY
- Eleanor Fish

CLINICAL DECISION-MAKING & HEALTH CARE
- Claire Bombardier

CLINICAL INVESTIGATION & HUMAN PHYSIOLOGY
- John Marshall

EXPERIMENTAL THERAPEUTICS
- David Kelvin

GENOMIC MEDICINE
- Katherine Siminovitch

CLINICAL STUDIES RESOURCE CENTRE
- John Parker

CLINICAL REPRESENTATION
- Carl Cardella
- Christopher Feindel
- Gary Levy

SITE REPRESENTATION
- Janet Beed

VP RESEARCH
- Christopher J. Paige
Toronto Western Research Institute
Toronto Western Hospital

STAFF AND STUDENTS

<table>
<thead>
<tr>
<th>Total Number of Researchers</th>
<th>134</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Scientists</td>
<td>43</td>
</tr>
<tr>
<td>Scientists</td>
<td>12</td>
</tr>
<tr>
<td>Affiliate Scientists</td>
<td>15</td>
</tr>
<tr>
<td>CSRC Members</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Number of Trainees</th>
<th>129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fellows</td>
<td>74</td>
</tr>
<tr>
<td>PhD Students</td>
<td>11</td>
</tr>
<tr>
<td>Other Graduate Students</td>
<td>44</td>
</tr>
<tr>
<td>Staff</td>
<td>177</td>
</tr>
</tbody>
</table>

Research Space
- 105,000 sq ft

Publications
- 394

Total External Funding
- $14,900,000

STAFF AND STUDENTS

Applied & Interventional Research

SENIOR SCIENTISTS
- Brotchie, Jonathan
- Davis, Karen
- De Nil, Luc
- Diamant, Nicholas
- Feindel, Christopher
- Flanagan, John
- Hassouna, Magdy
- Lang, Anthony
- Lozano, Andres
- Mailis, Angela
- McAndrews, Mary Pat
- Mikulis, David
- Saint-Cyr, Jean
- Sandor, Paul
- Shapiro, Colin
- Sharpe, James
- Steinbach, Martin
- Trope, Graham
- Wallace, Christopher

SCIENTISTS
- Hutchison, William
- Chen, Robert
- Hudson, Christopher
- Kucharczyk, Walter
- Roberts, Timothy
- Wong, Agnes

AFFILIATE SCIENTISTS
- Dostovsky, Jonathan
- Eizenman, Moshe
- Ethier, Ross
- Guha, Abhijit
- Halliday, William
- Hamstra, Stanley
- Harvey, Patricia
- Irving, Elizabeth
- Kayumov, Leonid
- Stephens, Robyn
- Wilkinson, Frances

SCIENTISTS
- Bremner, Roderick
- Broussard, Dianne
- Cardella, Carl
- Carlen, Peter
- Eubanks, James
- Fehlings, Michael
- Inman, Robert
- Jongstra, Jan
- Mills, Linda
- Nag, Sukriti
- Schlichter, Lyanne
- Skinner, Frances
- Stanley, Elise
- Tator, Charles
- Tsui, Florence
- Tymianski, Michael
- Wither, Joan

AFFILIATE SCIENTISTS
- El-Beheiry, Hossam El-Din
- Gallie, Brenda

Outcomes & Population Health

SENIOR SCIENTISTS
- Badley, Elizabeth
- Carette, Simon
- Cassidy, David
- Fortin, Paul
- Gladman, Dafna
- Urowitz, Murray

SCIENTISTS
- Gignac, Monique
- Mahomed, Nizar
AFFILIATE SCIENTISTS
Cott, Cheryl
Glazier, Richard
Lineker, Sydney

Clinical Studies Resource Centre
MEMBERS
Anastakis, Dimitri
Bernstein, Mark
Bookman, Arthur
Buys, Yvonne
Chan, Vincent
Chapman, Kenneth
Chung, Frances
Davey, Roderick
Del Campo, Martin Jose
Devenyi, Robert
Epstein, Trina
Escallon, Jaime
Etlin, David
Evans, Michael
Farb, Richard
Fung, Ken
Gentili, Fred
Graham, Brent
Hawa, Raed
Heathcote, Jenny
Iwanochko, Mark
Lam, Robert
Lam, Wai-Ching
Manninen, Pirjo
Massicotte, Eric
McCartney, Colin
McGuire, Glenn
McIntyre, Roger
Melvin, Kenneth
Miyasaki, Janis
Montaner, Walter
Moro, Elena
Nasmith, James
Oandasan, Ivy
Ogilvie, Richard
Ogilvie-Harris, Darrell

Panisko, Daniel
Parikh, Sagar
Peng, Philip
Radomski, Sidney
Rampersaud, Yoga Raja
Rootman, David
Rosen, Cheryl
Seyone, Chanth
Shannon, Patrick
Shaw, James
Silver, Frank
Simons, Martin
Singer, Shaun
Slomovic, Allan
St George-Hyslop, Peter
Stanbrook, Matthew
Tarlo, Susan
Terbrugge, Karel
Tu, Karen
Tumber, Paul
von Schroeder, Herbert
Voon, Valerie
Werrett, John
Willinsky, Robert
Wong, David
Wong, Jean
Yogendran, Suntheralingam
Yu, Eric Ho Cheung

NB—where members have more than one affiliation, only one affiliation is indicated

RESEARCH COUNCIL
DIRECTOR
Peter St George-Hyslop
APPLIED & INTERVENTIONAL RESEARCH
Andres Lozano
CELL & MOLECULAR BIOLOGY
Elise Stanley
OUTCOMES & POPULATION HEALTH
Elizabeth Badley
CLINICAL STUDIES RESOURCE CENTRE
Jenny Heathcote
CLINICAL REPRESENTATION
Michael Fehlings
Nizar Mahomed
Martin Steinbach
SITE REPRESENTATION
Catherine Zahn
VP RESEARCH
Christopher J. Paige
Toronto Medical Discovery Tower at MaRS

This year the new Toronto Medical Discovery Tower continued to take shape at the corner of College and Elizabeth Streets

The new Toronto Medical Discovery Tower, first phase of the Medical and Related Sciences (MaRS) development, is a 400,000 sq ft, 15 floor building currently under construction.

Allowing Expansion of UHN Research Programs
UHN researchers will occupy nine floors when completed. “This new space will be a tremendous boon to UHN Research,” notes Dr. Christopher Paige, Vice President, Research. “It will allow us to expand critical programs and launch new programs from the ground up.” With the building quickly taking shape, occupancy is on track for September 2005.

UHN programs under discussion for creation in TMDT include a new drug discovery program incorporating medicinal chemistry and structural biology...a research program in infectious diseases/immune system research...a convergence centre bringing together a team of engineers, physicists, biologists and clinical researchers to work on multi-disciplinary problems...a home for the McEwen Regenerative Medicine Centre for gene, cell and tissue therapy...a satellite of the McLaughlin Centre for Molecular Medicine including programs in global health and stem cell research...an imaging program for testing new imaging modalities on small to large animal models...and a number of smaller initiatives proposed by research groups.

State-of-the-Art Construction for Research
The tower has been designed as a fully integrated research facility with significant flexibility on a floor by floor basis. Unique features include 100% fresh air, independent air handlers on each floor, a highly stable structure (minimal vibrational/sway impact), a central reverse osmosis water system, and specialty exhaust risers.

The base building construction for the Toronto Medical Discovery Tower is expected to be complete by the end of 2004, with interior fit-out already underway. TMDT will be ready for full occupation by September 2005.
TMDT MILESTONES

BASE BUILDING

<table>
<thead>
<tr>
<th>May 04</th>
<th>Oct 04</th>
<th>Jan 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete structure completed</td>
<td>Glass enclosure completed</td>
<td>Base building systems completed</td>
</tr>
</tbody>
</table>

INTERIOR FINISH

<table>
<thead>
<tr>
<th>Oct 03</th>
<th>Jan 04</th>
<th>Aug 04</th>
<th>Dec 04</th>
<th>Sept 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept design completed</td>
<td>Schematic design completed</td>
<td>Interior construction initiated</td>
<td>Detail design completed</td>
<td>Full occupancy for UHN Research</td>
</tr>
</tbody>
</table>

TMDT STATISTICS

<table>
<thead>
<tr>
<th>Workers on site each day</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of excavated earth</td>
<td>29,750 m³</td>
</tr>
<tr>
<td>Concrete poured</td>
<td>20,000 m³</td>
</tr>
<tr>
<td>Structural steel</td>
<td>179,000 kg</td>
</tr>
<tr>
<td>Reinforcing steel</td>
<td>2,770,000 kg</td>
</tr>
<tr>
<td>Indiana limestone (exterior)</td>
<td>11,800 ft²</td>
</tr>
<tr>
<td>Exterior glass</td>
<td>15,600 m²</td>
</tr>
<tr>
<td>Window frames</td>
<td>2,500</td>
</tr>
<tr>
<td>Doors and frames</td>
<td>295</td>
</tr>
<tr>
<td>Elevators</td>
<td>9</td>
</tr>
<tr>
<td>Historical bricks salvaged</td>
<td>50,000</td>
</tr>
<tr>
<td>New trees planted</td>
<td>43</td>
</tr>
</tbody>
</table>
New Institute for Breast Cancer Research Opens

A first in Canada, new institute will attack disease on basic, translational and clinical research fronts

June 2004 marked the launch of UHN’s newest research initiative, the Institute for Breast Cancer Research. Fuelled by generous donor and Foundation support, led by one of Canada’s top scientists, and including a stellar scientific team, the new program promises significant future breakthroughs against a disease that strikes one in nine Canadian women.

Making an Impact

“Advances in basic research have created a new opportunity ready for translation into the clinic. Scientists now have the tools—knowledge of the molecular and genetic factors in the development of breast cancer—to make an impact on the treatment of breast cancer,” says Dr. Tak Mak, director of the new initiative.

Mechanistically-based drugs—drugs which offer the promise of better treatment with fewer side effects—are rapidly becoming a reality as scientists reveal new insights into the genetic and cellular mechanisms of cancer development.

Within the past three to five years, these drugs have become available for many types of cancers—including leukemia and colon and stomach cancers. Based on the pioneering work done by Dr. Mak and others, new mechanistically-based treatments for breast cancer are not far behind.

Scientific Leadership

Dr. Mak is one of Canada’s most prolific researchers and is most famous for his 1984 landmark scientific paper on the cloning of the T cell receptor genes, a key component of the human immune system. He is a Senior Scientist with the hospital’s research arm, the Ontario Cancer Institute, as well as a University Professor with the University of Toronto, an Officer of the Order of Canada, and one of a handful of Canadians elected a Foreign Associate of the National Academy of Sciences (USA) and a Fellow of the Royal Society. His international recognition includes the King Faisal Prize for Medicine, the Gairdner Foundation International Award, the Sloan...
Prize of the GM Cancer Foundation, and, most recently, Germany’s top scientific award, the Paul Ehrlich and Ludwig Darmstädter Prize.

Dr. Mak’s studies of mice deficient in genes involved in tumorigenesis, including MSH2, DPC-4, PTEN and the breast cancer genes BRCA1 and BRCA2, have furthered our understanding of cancer development. Using mutant mice that have been disrupted in the genes encoding FADD, Apaf-1, TNFR1, and several TRAFs and caspases, he and his colleagues have dissected pathways of cellular survival and programmed cell death.

Innovative Collaborations
Also key to this program is its translational and clinical research slant. The new initiative will bring together many types of cancer researchers—scientists, clinicians and others—to conquer breast cancer. Already on board are noted epidemiologist Norman Boyd, MD, DSc, FRCPC; Terry Fox Young Investigator Lea Harrington, PhD; recent AAAI Investigator Award winner Pam Ohashi, PhD; and noted investigator Dr. Wen-Chen Yeh, MD, PhD.

Up to six investigators to be recruited in the coming months will provide additional clinical and translational research expertise.

The new Institute was launched with a goal of raising a total of $125M. Already, $60M is committed, with part of the money coming from funds raised by thousands of walkers in the annual Weekend to End Breast Cancer event in Toronto held in September. The Princess Margaret Hospital Foundation is pledging to raise an additional $65M from private donors, corporations and other sources to fund the Institute.

ADVISORY BOARD OF THE INSTITUTE FOR BREAST CANCER RESEARCH
Paul Alofs
Robert Bell
Carole Grafstein
Audrey Loeb
Tak Mak
David McCready
Christopher Paige
Lionel Robins
Katherine Vallis
Toronto Western Research Institute Welcomes New Director

World-renowned neurologist and molecular geneticist Dr. Peter St George-Hyslop appointed

This year UHN was pleased to welcome Peter St George-Hyslop, MD, as new Director of the Toronto Western Research Institute.

Dr. St George-Hyslop’s pioneering genetics research into susceptibility and neurodegeneration in Alzheimer’s disease has had a major impact, establishing him as an international authority in the field.

He has published more than 200 papers in leading peer-reviewed journals, and he has won numerous prestigious awards, including two Howard Hughes International Scholar Awards (1997 and 2002) and a Distinguished Scientist Award from the Canadian Institutes of Health Research in 2001. Most recently he was appointed to the Royal Society.

“I am excited by the opportunity to provide leadership here,” says Dr. St George-Hyslop. “The research institute has a strong tradition in neuroscience research, and the Toronto community is also recognized internationally for research in this area.”

Dr. St George-Hyslop received his MD degree from the University of Ottawa prior to doing postgraduate training at Ottawa, Toronto and Harvard. His first staff appointment was at Massachusetts General Hospital, and he returned to Toronto in 1991 as Assistant Professor, Department of Medicine (Neurology).

Currently Director of the Memory Disorders Clinic at TWH, Dr. St George-Hyslop is also Director of the Centre for Research in Neurodegenerative Diseases and Professor in the Department of Medicine at the University of Toronto. He also speaks extensively to public audiences about Alzheimer’s disease.
Scientific breakthroughs occur daily. How can a research hospital best position itself to be at the forefront of scientific and clinical change? This is the main question underlying strategic planning at UHN.

Beginning with the hospital-wide strategic plan approved in 2001, and including the draft research plan drafted in 2002 and finalized in 2004, UHN Research has been involved with scanning the horizons of the biomedical research field and gauging new opportunities for development.

Progress in 2003/04
This year marked the launch of The Future Project Phase II. Its goal is to develop detailed tactics for implementing the strategies detailed in Phase I.

A core of 12 Platform executives, aided by Task Forces, led this process. From January to June, they embarked on an extensive consultation process involving input from UHN investigators, Research Councils and Platform Task Forces. This process included discussion forums, focus groups and the online survey Call for Ideas!

Future Steps
The draft plan will become available in late 2004 for review and feedback by researchers and research leadership as well as the UHN International Research Advisory Board.

UHN thanks the Platform Chairs and Task Forces for their efforts to date:
Many post-menopausal breast cancer survivors take tamoxifen to ensure that the cancer does not return. However, tamoxifen is only effective for about five years, leaving the survivors with no effective therapies to follow.

Breast Cancer:
New Drug So Promising
That Trial Cut Short

In a surprise action by a panel of experts, a major international clinical trial conceived and led by Dr. Paul Goss involving 5,187 women across nine countries was recently halted early because the results were so astoundingly positive.

The trial was conducted under the auspices of the National Cancer Institute of Canada’s Clinical Trials Group, the US NCI and the Breast International Group in Europe.

The study, reported as an expedited on-line publication, showed that a new drug (letrozole), given after a round of treatment with tamoxifen, cut the risk of breast cancer returning by 44% in post-menopausal women. “Having ended the trial, we are now able to offer letrozole to women who were receiving placebo, so that they too may benefit from the treatment,” says Dr. Goss. “This is the first time we have proof of an effective treatment after tamoxifen that will keep cancer at bay in women who are at substantial ongoing risk of suffering a relapse.”

The study showed letrozole to be more effective than chemotherapy at preventing the recurrence of breast cancer. “This finding will change the way breast cancer is treated worldwide, and it offers significant new hope to women,” says Dr. Goss.

Head and Neck Cancer: New Therapy Delivers Killer Genes

New research from a large team of UHN investigators may bring us one step closer to gene therapy for a type of cancer that affects people with Southeast Asian or Mediterranean backgrounds.

A team led by Drs. Fei-Fei Liu, Jeff Medin, Peter Neligan, Pat Gullane, Brian O'Sullivan, Ralph Gilbert, Chris Richardson and Wen-Chen Yeh, postdoctoral fellow Dr. Jian-Hua Li and graduate student Ken Yip have developed a new way of making nasopharyngeal cancer cells more vulnerable to radiation.

Nasopharyngeal cancer affects predominantly a young population, and current methods of control have a five-year survival rate of only 70%.

Exploiting the ability of genes such as FasL or BimS to cause these cancer cells to commit suicide, the team has modified these genes to make them safer by targeting their expression only in the cancer cells, and then delivered them by direct injections into tumours in mice. These genes stopped the growth of tumours without noticeable toxicity, implying that this strategy may be very promising for future development of treatments for human patients.

FasL and BimS can both trigger cellular apoptosis, or cell death—an effect that is useful in treating cancer cells.

Breast cancer survivors sometimes report symptoms of chemo-fog, a cognitive impairment that is a real issue for quality of life during recovery.

Holliday Junctions are structures allowing DNA to recombine and “cross-over”—generating the genetic diversity that is one of the keystones of the evolutionary process.

PTEN is a tumour suppressor gene that is essential for normal cell growth and has been implicated in over 50% of all types of human tumours.

Genetics of Cancer: Missing Gene an Early Cancer Alert

A team of OCI/PMH scientists stunned the cancer research world in June, 2004, with their announcement that a protein discovered in yeast is a powerful tumour suppressor.

Drs. Razq Hakem, Rama Khokha and postdoctoral fellows Peter McPherson and Bénédicte Lemmers showed that a loss of one or both copies of the Mus81 gene led to the development of lymphomas and other cancers in mice.

"This finding was surprising because everyone had thought that this protein was required for the processing of DNA structures called 'Holliday Junctions' that form during DNA repair. Our work disproves this theory, and reveals an important function for Mus81 as a tumour suppressor," explains Dr. Hakem.

The next step is to determine whether cancer patients have a mutated form of the protein. “If this is shown to be true in humans, we will have a way of screening for people at risk,” he says.

Prostate Cancer: Loss of PTEN Implicated

A key cancer gene is critical for the development of prostate cancer, says a recent report authored by Drs. Tak Mak, Vuk Stambolic, Ming-Sound Tsao, and William Chapman and student Stephanie Backman.

"Prostate cancer is the second leading cause of cancer deaths in men, and there is currently no known single cause of its initiation," says Dr. Chapman.

“Our finding is the first to show that PTEN is critical for suppressing tumour development in the prostate. In the future we may be able to target preventive measures towards restoring this gene, or reactivating it.”

Breast Cancer: Effects of Chemotherapy Revealed

Dr. Ian Tannock and his colleagues recently published a study showing that breast cancer patients receiving chemotherapy scored more poorly on tests of memory and language than did healthy women.

Many breast cancer survivors report memory difficulties and being unable to concentrate. The study, which is a follow-up of Dr. Tannock’s 2000 study of the same phenomenon, also showed that the women receiving chemotherapy experienced more fatigue and menopausal symptoms than did healthy women.

Although the results of these studies can be used to advise patients about the adverse effects of chemotherapy, Dr. Tannock stresses that women shouldn’t stop using chemotherapy to treat their cancer.

“The negative side effects of chemotherapy certainly don’t outweigh the benefits. We are currently working to identify strategies that will ease these side effects, and hopefully improve quality of life for these women,” he says.

Breast Cancer: Effects of Chemotherapy Revealed

Breast cancer survivors sometimes report symptoms of chemo-fog, a cognitive impairment that is a real issue for quality of life during recovery.

Holliday Junctions are structures allowing DNA to recombine and “cross-over”—generating the genetic diversity that is one of the keystones of the evolutionary process.

PTEN is a tumour suppressor gene that is essential for normal cell growth and has been implicated in over 50% of all types of human tumours.

Genetics of Cancer: Missing Gene an Early Cancer Alert

A team of OCI/PMH scientists stunned the cancer research world in June, 2004, with their announcement that a protein discovered in yeast is a powerful tumour suppressor.

Drs. Razq Hakem, Rama Khokha and postdoctoral fellows Peter McPherson and Bénédicte Lemmers showed that a loss of one or both copies of the Mus81 gene led to the development of lymphomas and other cancers in mice.

"This finding was surprising because everyone had thought that this protein was required for the processing of DNA structures called 'Holliday Junctions' that form during DNA repair. Our work disproves this theory, and reveals an important function for Mus81 as a tumour suppressor," explains Dr. Hakem.

The next step is to determine whether cancer patients have a mutated form of the protein. “If this is shown to be true in humans, we will have a way of screening for people at risk,” he says.

Prostate Cancer: Loss of PTEN Implicated

A key cancer gene is critical for the development of prostate cancer, says a recent report authored by Drs. Tak Mak, Vuk Stambolic, Ming-Sound Tsao, and William Chapman and student Stephanie Backman.

"Prostate cancer is the second leading cause of cancer deaths in men, and there is currently no known single cause of its initiation," says Dr. Chapman.

“Our finding is the first to show that PTEN is critical for suppressing tumour development in the prostate. In the future we may be able to target preventive measures towards restoring this gene, or reactivating it.”

Photodynamic Therapy: How Much is Enough?

New research from the lab of Dr. Brian Wilson may help solve the problem of how to dose photodynamic therapy (PDT), an emerging treatment for cancer.

PDT is based on a drug that is activated by light. After application, the drug zeroes in on cancer cells, accumulating in large concentrations. When activated by laser light, the drug produces toxic molecules that destroy the cancer cells.

To determine exactly how much PDT is needed for effective treatment, Dr. Wilson and graduate student Mark Niedre took an approach never taken before.

“Rather than measuring the amount of PDT administered to the cancer cells, we measured the concentration of toxic molecules produced,” Dr. Wilson explains. “We found that the number of cancer cells that were destroyed was proportional to the concentration of toxic molecules produced, a finding that suggests that this method could be used to measure PDT.”

The group plans further studies to test the feasibility of using this non-invasive technique to optimize PDT treatments in a clinical setting.

Lymphoma: New Study Confirms Treatment Choice in MALT Lymphoma

Emphasizing Princess Margaret Hospital’s leading role in cancer treatment advances, a team of radiation oncologists and radiation physicists led by Dr. Richard Tsang and including Drs. Mary Gospodarowicz, Woodrow Wells, Alexander Sun, Michael Crump, David Hodgson and Bruce Patterson and statistician Melania Pintile has studied optimal treatment strategies for a puzzling cancer called localized mucosa-associated lymphoid tissue (MALT) lymphoma.

Associated with various organs in the body, including stomach, tissues surrounding the eye, salivary glands and thyroid glands, this type of cancer is slow growing and not prone to metastasis, indicating that it may be an excellent candidate for radiation therapy.

The team studied responses of 85 patients to radiation therapy, and determined that 84 of these patients had responded “extremely well” to moderate-dose radiation therapy, showing that radiation therapy is an excellent choice for controlling this disease.

Photodynamic therapy is a new treatment being used to treat some types of esophageal and lung cancers.

Radiation therapy is often used to treat localized cancers at specific sites; chemotherapy is often the treatment of choice for cancers which have metastasized, or dispersed.
For those co-infected with both AIDS and malaria, the effect(s) of antiretroviral drugs for the treatment of HIV on the clinical course of malaria are unknown. New research by Dr. Kevin Kain and postdoctoral fellow Lena Serghides has now shown that ritonavir and saquinavir—two antiretroviral drugs commonly used to treat HIV—impair the immune response to malaria.

Immune cells treated with the antiretrovirals showed decreased amounts of CD36, a protein that is crucial for macrophages to eliminate red blood cells infected with the malaria-causing Plasmodium parasite. The loss of CD36 caused a 50-60% reduction in the number of parasitised red blood cells that were purged from the blood, as part of the body’s protective immune response.

This study calls attention to the potential for antiretroviral drugs to worsen malaria, which in turn could worsen HIV disease progression and transmission, a potentially serious public health issue.

SARS: UHN Develops World’s First Treatment

A new treatment devised by Dr. Eleanor Fish and based on antiviral proteins called interferons has shown great promise against SARS in preliminary tests. Interferons are produced by the immune system to fight viral infections.

During Toronto’s second SARS outbreak, the new treatment was administered to 19 patients with the help of Dr. Mona Loutfy at North York General Hospital. Only the four most critically ill died—suggesting that early treatment may be the key to its effectiveness. Patients who received interferon showed faster improvement of their disease based on their lung X-rays, and they required less oxygen than did comparable patients during the first phase of the outbreak (who did not receive interferon).

“Although our findings are still preliminary, they are extremely encouraging. A global strategy for SARS preparedness is being developed, and it includes further examination of the potential therapeutic benefit of early treatment with interferon,” says Dr. Fish.

The study also involved UHN researchers Drs. Kathy Siminovitch, Kevin Kain and Gary Levy.

Lung Transplant: New Treatments on the Horizon for Transplant Patients

Recent findings from the labs of Drs. Shaf Keshavjee, Li Zhang, and Tom Waddell have important implications for preventing reperfusion injury—a severe side effect that can develop after transplantation.

Based on the knowledge that the immune system’s T cells are involved in mediating this injury, the research team performed lung transplants on two groups of animals: those with their T cells intact, and those missing their T cells. Following transplant, it was clear that the mice with T cells had fared worse—their new lungs didn’t function as well, and there was evidence that the T cells were preparing to launch an attack on the transplanted lungs.

These findings provide evidence that it is the transplant recipient’s own T cells that mediate reperfusion injury following transplant, a finding that has implications for how doctors might prevent and treat this type of injury.

According to the International Society for Heart and Lung Transplantation, there are more than 1600 lung transplants performed each year around the world. Reperfusion injury is a common side effect involving an immune reaction between the organ and its recipient.

The World Health Organization has adopted Dr. Fish’s new treatment as the first standard treatment for this baffling disease.
Leukemia: Targeting “Hidden” Cells for Successful Treatment

New research by Dr. John Dick, graduate student Kristin Hope, and research associate Liqing Jin may help explain why 60-90% of leukemia patients suffer a recurrence following treatment.

Using his pioneering method of studying human stem cells, Dr. Dick and his team learned that there are many different types of leukemia stem cells (LSC), just as there are different types of regular, healthy blood stem cells. Some LSCs are fast acting, while others can lie dormant for a long time before they become reactivated.

“Our research suggests that leukemia recurs because chemotherapy isn’t designed to target these dormant cells,” says Dr. Dick. “Now that we know they’re there, we need to figure out how to eliminate them.”

Dr. Dick predicts that similar cancer stem cells will be found for solid tumours, such as breast cancer.

Arthritis: Balancing Treatment Costs with Benefits

By the year 2026, it is estimated that more than 6M Canadians will have arthritis. To examine the skyrocketing costs associated with this disease, Dr. Andreas Maetzel—a specialist in the field of pharmacoeconomics—assesses the benefits of arthritis medications.

Recently, two of the drugs under scrutiny were rofecoxib for the treatment of osteoarthritis, and celecoxib for the treatment of rheumatoid arthritis. Using a variety of assessment tools including mathematical modeling techniques and Canadian databases, the team found that both drugs are economically attractive, but only for elderly and “high risk” patients. Thus, the message for physicians is clear: exercise discretion when prescribing these medications, since the benefits may not justify the costs in all patients.

Cholesterol Levels: Obesity and Physical Inactivity Quell Good Cholesterol

In an aging population concerned with preserving good circulatory health, a question that continues to plague researchers is how do individuals lose HDL, or “good” cholesterol.

A study published by Dr. Gary Lewis and his team suggests that the answer may lie in the interaction between triglycerides and the liver enzyme hepatic lipase (HL).

Using an animal model, the team found that HL eliminated the good cholesterol from the body at a faster rate in the presence of elevated triglycerides—not the case in animals whose good cholesterol was not enriched with triglycerides.

“This suggests that high levels of fats in the blood change the structure of the good cholesterol molecules, making them easier for HL to target and destroy—an important finding for controlling the harmful effects of fat in the diet,” says Dr. Lewis.

Heart disease, obesity, and diabetes: all are conditions associated with high levels of fats (triglycerides) in the blood and low levels of HDL cholesterol, or “good” cholesterol.

Stem cells are powerful progenitor cells. They are the “mother cells” that give rise to many different types of “offspring” during growth and maintain the body as it ages.
Lymphoma: Special T Cells May Improve Treatment Success

A recent finding by a UHN investigator may overcome a major hurdle in the development of immune-based therapies for cancer.

Bone marrow transplants are a common and successful treatment for cancer. However, a battlefield can potentially develop as donor and recipient immune cells wage war in the recipient. One type of battle is “graft-versus-host disease”, in which immune cells from a cell donor attack the recipient’s tissues, leading to serious disease. Another type of battle is “graft-versus-lymphoma”, in which donor cells attack the cancer, resulting in cancer regression. The current challenge is to trigger the beneficial effects of the graft-versus-lymphoma phenomenon without exposing the transplant recipient to an increased risk of graft-versus-host disease.

A team led by Dr. Li Zhang and graduate student Kevin Young has now identified a special type of immune T cell, the DN T cell, which can trigger the healing graft-versus-lymphoma effects without causing graft-versus-host disease. In a mouse model, these DN T cells can directly kill lymphoma cells in vitro and prevent growth of the cancer. Thus the DN T cells may offer a new treatment approach for cellular therapy of cancer.

Cancer Res. 2003 Nov 15;63(22):8014-21.

Heart Failure: Protein Lures Immune Cells, Damaging Heart

High levels of the endothelin ET-1 in the heart lead to an increased risk of heart failure, and the findings of a recent study by Drs. Mansoor Husain and Avrum Gotlieb may tell us why.

Drs. Husain and Gotlieb compared heart function in normal mice to heart function in mice with high levels of ET-1. “The heart tissue of mice with high amounts of ET-1 was full of immune cells,” explains Dr. Husain. “Since there was no real infection, the chemicals released by the immune cells were damaging the heart, causing heart failure.”

When the researchers treated these mice with drugs to block ET-1, they were able to reduce the incidence of heart failure, proving that ET-1 was responsible for luring the immune cells to the heart. The research points to a potential new strategy for treating this condition.

Despite the fact that hematopoietic stem cell transplants are widely used to treat lymphoma, graft-versus-host disease remains a barrier to successful treatment. New immune-based therapies must overcome this risk.

Endothelins are molecules that exert powerful control over the activities of our blood vessels. They play a role in hypertension and other circulatory illnesses.
Molecular Complexes Control Brain Function

The cells of our nervous system communicate with each other by sending messages via chemicals called neurotransmitters. The release of these chemicals, though, requires several steps and involves several proteins, and new research by Dr. Elise Stanley and post-doctoral fellows Qi Li and Anthony Lau reveals that this process is far more complicated than once thought.

Using state-of-the-art imaging technology, the research team found that the many proteins involved in releasing these chemicals—once thought to be separate from one another—are actually part of a single complex.

“Our research shows that the point of transmitter release contains highly evolved, minuscule molecular machines designed to transfer information between nerve cells under very tight control,” says Dr. Stanley. J Neurosci. 2004 Apr 21;24(16):4070-81.
Internal Clock: Tick-Tock of the Body Clock Under Tight Control

Research by neuroscientist Dr. Qi Wan provides new clues regarding how our body’s internal clock keeps such good time.

Our internal clock is made up of numerous “clock cells” that all work together to control the timing of rhythmic functions such as sleeping, waking, and digestion, to name a few.

Dr. Wan’s research shows that proteins called GABA_A receptors—long believed to be the principal clock regulators—are actually controlled by another protein called CKI_x-CKI_β.

“Our research provides evidence of an intracellular mechanism for regulating synchronization of our body’s clock,” explains Dr. Wan. “It is relevant for the future development of treatments for people with health problems associated with insomnia, shift work, and jet lag.”

Childhood Cancer: Clue May Help Understand Cancer Development

Featured as the cover story in the June issue of *Cancer Cell,* new research by Dr. Rod Bremner and postdoctoral fellows Danian Chen, Izhar Livne-bar and Mahima Agochiya will lead to the development of new treatments for retinoblastoma, the most common eye cancer in children.

Using mice that have retinoblastoma, Dr. Bremner found that some retinal cells exhibit abnormal survival patterns—patterns that are the hallmark of cancer cells.

“These cells may be partially cancer-like to begin with. They may explain why retinoblastoma, as well as other childhood cancers, develop in fewer steps than typical adult cancers. It may also help us develop drugs that interfere with the cellular development of cancers of many types.”

Retinoblastoma is the most common childhood eye cancer. It can run in families or occur “sporadically” (without previous family history).

The body clock is involved in insomnia, jet lag, response to shift work and other rhythmic functions and dysfunctions.
Systemic lupus erythematosus, commonly called lupus, is an autoimmune disease affecting primarily women.

Lupus and Heart Disease: Risk Greater in Women With SLE

In the first large-scale study of its kind, Drs. Dafna Gladman and Murray Urowitz and TGRI/TGH's Dr. George Steiner looked for risk factors for coronary artery disease in women with systemic lupus erythematosus (SLE). Women with SLE are known to have a greater risk for heart disease than other women.

The researchers compared the number of heart disease risk factors in women with and without SLE, and found that based on classic heart disease risk factors, the 10-year risk of heart attack was the same in both groups of women.

However, the researchers did find that women with SLE had higher levels of fat molecules in their blood, including triglycerides (the major form of fat) and VLDL cholesterol (the "bad" cholesterol), which may be related to their basic disease process or its therapy.

“Problems related to lipid metabolism are characteristic of SLE,” explains Dr. Gladman, “and further studies are needed to understand exactly how this contributes to the increased risk of heart disease in this high-risk patient group. Although many patients can reduce their risk using screening and intervention procedures, more research is needed to learn how to accurately predict the risk of heart disease in these patients.”

Hepatitis: Body Weight, Dosing Closely Related

A new study by Drs. Jenny Heathcote and Brian Bressler and TGRI/TGH’s Dr. George Tomlinson shows that a person’s body mass index (BMI)—a measurement that describes a person’s weight relative to their height—may be a risk factor for determining their degree of responsiveness to antiviral treatment for hepatitis C infection.

A total of 253 hepatitis C patients were treated with antiviral therapies between 1989 and 2000. At six months post-therapy, their conditions were assessed to determine if the medications had been effective.

The results showed that the therapy was less effective in patients with a high body fat content (BMI>30) than in patients with a BMI of less than 30. “This research shows how important it is to maintain a healthy body weight,” says Dr. Heathcote, “and we are currently investigating how weight-based dosing may optimize treatment success.”

This research has spurred the FDA to request that pharmaceutical companies who make therapies for hepatitis C conduct further tests to examine the effect of body weight on drug efficacy. *Hepatology.* 2003 Sep;38(3):639-44.

Stroke: Main Source of Brain Damage Identified

Exciting new research conducted by a team of researchers led by Dr. Michael Tymianski and colleague Dr. John MacDonald has provided a better understanding of how stroke causes brain damage.

Reported in *Cell*, the research shows that when brain cells are deprived of oxygen and nutrients—as in a stroke—an ion channel on the surface of brain cells (called TRMP7) is activated. This releases toxic molecules, which then kill other, healthy brain cells in the vicinity.

“Now that we know that TRMP7 is the culprit, we can focus on developing medications that will prevent these consequences and improve patient outcome,” says Dr. Tymianski. *Cell.* 2003 Dec 26; 115(7):863-877.

New research from a UHN group is making the medical community re-examine the relationship between body weight and drug efficacy.

Much of the damage in the brain associated with stroke occurs hours and days after the initial incident—leaving a window of time for preventive treatment.
Research Funding

Revenues

All figures represent fiscal year 2003/04 and include Ontario Cancer Institute (Princess Margaret Hospital); Toronto General Research Institute (Toronto General Hospital) and Toronto Western Research Institute (Toronto Western Hospital). These figures have been provided by UHN Research Financial Services and Research Grant and Contract Services.

UHN Research Core Funding

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Total ($1,000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Princess Margaret Hospital Foundation</td>
<td>14,500</td>
</tr>
<tr>
<td>Toronto General & Western Hospital Foundation</td>
<td>4,000</td>
</tr>
<tr>
<td>Arthritis & Autoimmunity Research Centre Foundation</td>
<td>1,500</td>
</tr>
<tr>
<td>Recoveries</td>
<td>5,859</td>
</tr>
<tr>
<td>Investment Income</td>
<td>3,859</td>
</tr>
<tr>
<td>Ministry of Health & Long Term Care</td>
<td>2,816</td>
</tr>
<tr>
<td>Other</td>
<td>7,835</td>
</tr>
</tbody>
</table>

Total External Funding Awarded by Purpose of Funding ($1000’s)

- **Operating Grants**: 75,261
- **Clinical Studies**: 11,788
- **Corporate Contracts**: 6,667
- **Infrastructure/Maintenance Awards**: 7,318
- **Career/Traineeship Awards**: 7,503
- **Other**: 7,072

Total: 115,607

Major Sources of External Funding

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Total ($1000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Institutes of Health Research</td>
<td>20,542</td>
</tr>
<tr>
<td>National Cancer Institute of Canada</td>
<td>9,886</td>
</tr>
<tr>
<td>Ontario R & D Challenge Fund</td>
<td>6,256</td>
</tr>
<tr>
<td>National Institutes of Health (U.S.)</td>
<td>6,234</td>
</tr>
<tr>
<td>Ontario Innovation Trust</td>
<td>6,198</td>
</tr>
<tr>
<td>Ontario Cancer Research Network</td>
<td>6,054</td>
</tr>
<tr>
<td>Heart and Stroke Foundations</td>
<td>4,438</td>
</tr>
<tr>
<td>Canada Foundation for Innovation</td>
<td>3,624</td>
</tr>
</tbody>
</table>
Research Funding External Agencies

<table>
<thead>
<tr>
<th>Organization Name</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Laboratories</td>
<td>Abbot</td>
</tr>
<tr>
<td>Achillion Pharmaceutical</td>
<td>Achillion</td>
</tr>
<tr>
<td>Actelion Pharmaceuticals</td>
<td>Actelion</td>
</tr>
<tr>
<td>Agouron Pharma</td>
<td>Agouron</td>
</tr>
<tr>
<td>Alcon Research</td>
<td>Alcon</td>
</tr>
<tr>
<td>Allergan Sales</td>
<td>Allergan</td>
</tr>
<tr>
<td>Alteon</td>
<td>Alteon</td>
</tr>
<tr>
<td>Alzheimer Society of Canada</td>
<td>ASCC</td>
</tr>
<tr>
<td>Alzheimer’s Disease and Related Disorders Association</td>
<td>ADARD</td>
</tr>
<tr>
<td>Amgen</td>
<td>Amgen</td>
</tr>
<tr>
<td>Amrion</td>
<td>Amrion</td>
</tr>
<tr>
<td>American Association for Thoracic Surgery</td>
<td>AATS</td>
</tr>
<tr>
<td>American Association of Neurological Surgeons and Congress of Neurological Surgeons</td>
<td>AAN</td>
</tr>
<tr>
<td>American College of Surgeons</td>
<td>ACS</td>
</tr>
<tr>
<td>Arthritis Society</td>
<td>Arthritis</td>
</tr>
<tr>
<td>Arthritis Community Research & Evaluation Unit</td>
<td>ACREU</td>
</tr>
<tr>
<td>Arthritis Society</td>
<td>Arthritis</td>
</tr>
<tr>
<td>Associated Medical Services Incorporated</td>
<td>AMSI</td>
</tr>
<tr>
<td>Astra Pharma</td>
<td>Astra</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>AstraZeneca</td>
</tr>
<tr>
<td>Aventis Pasteur</td>
<td>Aventis</td>
</tr>
<tr>
<td>Banff and Best Diabetes Centre</td>
<td>BBD</td>
</tr>
<tr>
<td>Bausch and Lomb</td>
<td>Bausch</td>
</tr>
<tr>
<td>Baxter Healthcare Corporation</td>
<td>Baxter</td>
</tr>
<tr>
<td>Bayer</td>
<td>Bayer</td>
</tr>
<tr>
<td>Beckman Coulter</td>
<td>Beckman</td>
</tr>
<tr>
<td>Berlex Laboratories</td>
<td>Berlex</td>
</tr>
<tr>
<td>Biochem Therapeutic</td>
<td>Biochem</td>
</tr>
<tr>
<td>BioMedSources</td>
<td>BioMedSources</td>
</tr>
<tr>
<td>Bloomeview Epilepsy Research</td>
<td>Bloomeview</td>
</tr>
<tr>
<td>Boehringer Ingelheim</td>
<td>Boehringer</td>
</tr>
<tr>
<td>Boston Scientific Corporation</td>
<td>Boston</td>
</tr>
<tr>
<td>Brahm's Diagnostica</td>
<td>Brahm's</td>
</tr>
<tr>
<td>Breast Cancer Society of Canada</td>
<td>BCSC</td>
</tr>
<tr>
<td>Bristol-Myers Squibb Pharmaceutical Research Institute</td>
<td>BMS</td>
</tr>
<tr>
<td>Bronco Technologies</td>
<td>Bronco</td>
</tr>
<tr>
<td>C.R. Younger Foundation</td>
<td>CRYF</td>
</tr>
<tr>
<td>Canada Foundation for Innovation</td>
<td>CFII</td>
</tr>
<tr>
<td>Canadian Anesthesiologists Society</td>
<td>CASA</td>
</tr>
<tr>
<td>Canadian Association of Radiation Oncologists</td>
<td>CARCHI</td>
</tr>
<tr>
<td>Canadian Breast Cancer Foundation</td>
<td>CBRF</td>
</tr>
<tr>
<td>Canadian Cancer Research Initiative</td>
<td>CCRRI</td>
</tr>
<tr>
<td>Canadian Cancer Etiology Research Network</td>
<td>CANCERNET</td>
</tr>
<tr>
<td>Canadian Cancer Society (Ontario)</td>
<td>CCSON</td>
</tr>
<tr>
<td>Canadian Coordinating Office for Health Technology Assessment</td>
<td>CCOHTA</td>
</tr>
<tr>
<td>Canadian Cystic Fibrosis Foundation</td>
<td>CCFB</td>
</tr>
<tr>
<td>Canadian Dermatology Foundation</td>
<td>CDF</td>
</tr>
<tr>
<td>Canadian Diabetes Association</td>
<td>CDA</td>
</tr>
<tr>
<td>Canadian Foundation for AIDS Research</td>
<td>CFAR</td>
</tr>
<tr>
<td>Canadian Health Services Research Foundation</td>
<td>CSHERF</td>
</tr>
<tr>
<td>Canadian Institutes of Health Research</td>
<td>CIHR</td>
</tr>
<tr>
<td>Canadian Liver Foundation</td>
<td>CANL</td>
</tr>
<tr>
<td>Canadian Lung Association</td>
<td>CANLA</td>
</tr>
<tr>
<td>Canadian Prostate Centre</td>
<td>CANP</td>
</tr>
<tr>
<td>Canadian Society of Hospital Pharmacists</td>
<td>CSHP</td>
</tr>
<tr>
<td>Canadian Urologic Oncology Group</td>
<td>CUOOG</td>
</tr>
<tr>
<td>Cancer Care Ontario</td>
<td>CC</td>
</tr>
<tr>
<td>Cancer Research Institute</td>
<td>CRI</td>
</tr>
<tr>
<td>Cancer Research Society</td>
<td>CERS</td>
</tr>
<tr>
<td>Cangene Corporation</td>
<td>Cangene</td>
</tr>
<tr>
<td>Chiropractic Protective Association & National Chiropractic Mutual Insurance Company</td>
<td>CPMICN</td>
</tr>
<tr>
<td>CellGene Corporation</td>
<td>CellGene</td>
</tr>
<tr>
<td>Cell Therapeutics</td>
<td>CellT</td>
</tr>
<tr>
<td>Cervical Spine Research Society</td>
<td>CSRS</td>
</tr>
<tr>
<td>Change Foundation</td>
<td>Change</td>
</tr>
<tr>
<td>Ontario Ministry of Health</td>
<td>ONMO</td>
</tr>
<tr>
<td>CLIP Research (Switzerland)</td>
<td>CLIP</td>
</tr>
<tr>
<td>Cook (Canada)</td>
<td>Cook</td>
</tr>
<tr>
<td>Coritech</td>
<td>Coritech</td>
</tr>
<tr>
<td>Corvita Canada</td>
<td>Corvita</td>
</tr>
<tr>
<td>Covance</td>
<td>Covance</td>
</tr>
<tr>
<td>Crohns & Colitis Foundation of Canada</td>
<td>CCFCC</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>Cytarabine</td>
</tr>
<tr>
<td>Defense and Civil Institute of Environmental Medicine</td>
<td>DCIEM</td>
</tr>
<tr>
<td>Delex Therapeutics</td>
<td>DelexT</td>
</tr>
<tr>
<td>Den Haag Trust</td>
<td>DenHaag</td>
</tr>
<tr>
<td>Department of National Defense</td>
<td>DNDF</td>
</tr>
<tr>
<td>Dystonia Medical Research Foundation</td>
<td>Dystonia</td>
</tr>
<tr>
<td>ECHO Research</td>
<td>ECHO</td>
</tr>
<tr>
<td>Edwards Lifesciences</td>
<td>Edwards</td>
</tr>
<tr>
<td>EISAI Medical Research</td>
<td>EISAI</td>
</tr>
<tr>
<td>Eli Lilly</td>
<td>EliLilly</td>
</tr>
<tr>
<td>Endpoint Research</td>
<td>Endpoint</td>
</tr>
<tr>
<td>Epilepsy Canada</td>
<td>Epilepsy</td>
</tr>
<tr>
<td>Erbe USA Incorp</td>
<td>ErbeUSA</td>
</tr>
<tr>
<td>Eye Research Institute of Canada</td>
<td>ERIC</td>
</tr>
<tr>
<td>F.Hoffman-La Roche Ltd (Switzerland)</td>
<td>FHLR</td>
</tr>
<tr>
<td>Ferax Incorporated</td>
<td>Ferax</td>
</tr>
<tr>
<td>Foundation for Lung Cancer</td>
<td>FFC</td>
</tr>
<tr>
<td>Fournier (France)</td>
<td>Fournier</td>
</tr>
<tr>
<td>Fragile X Research Foundation of Canada</td>
<td>FXRFFC</td>
</tr>
<tr>
<td>Fujisawa Canada</td>
<td>Fujisawa</td>
</tr>
<tr>
<td>Fujisawa Healthcare</td>
<td>Fujisawa</td>
</tr>
<tr>
<td>Genome Quebec</td>
<td>GenomeQ</td>
</tr>
<tr>
<td>GENTA Incorporated</td>
<td>GENTA</td>
</tr>
<tr>
<td>GeoffreY H. Wood Foundation</td>
<td>GHWF</td>
</tr>
<tr>
<td>Gilad Sciences</td>
<td>Gilad</td>
</tr>
<tr>
<td>Glaxo</td>
<td>Glaxo</td>
</tr>
<tr>
<td>GlaxoSmithKline</td>
<td>Glaxo</td>
</tr>
<tr>
<td>GlycoDesign</td>
<td>GlycoD</td>
</tr>
<tr>
<td>Government of Canada-Canadian Space Agency</td>
<td>GCASA</td>
</tr>
<tr>
<td>Guidant Europe</td>
<td>Guidant</td>
</tr>
<tr>
<td>Health Canada</td>
<td>Health</td>
</tr>
<tr>
<td>Heart and Stroke Foundation</td>
<td>HSF</td>
</tr>
<tr>
<td>Hemosol</td>
<td>Hemosol</td>
</tr>
<tr>
<td>Hoffman-La Roche</td>
<td>Hoffman</td>
</tr>
<tr>
<td>Howard Hughes Medical Institute (US)</td>
<td>HHMI</td>
</tr>
<tr>
<td>IBM</td>
<td>IBM</td>
</tr>
<tr>
<td>Idenix Pharmaceuticals</td>
<td>Idenix</td>
</tr>
<tr>
<td>Ilex Oncology</td>
<td>Ilex</td>
</tr>
<tr>
<td>ImmuneX Corporation</td>
<td>ImmuneX</td>
</tr>
<tr>
<td>International Association for the Study of Pain</td>
<td>IASP</td>
</tr>
<tr>
<td>International Association for the Study of the Liver</td>
<td>ISL</td>
</tr>
<tr>
<td>International Society for Heart & Lung Transplantation</td>
<td>ISHLT</td>
</tr>
<tr>
<td>International Union Against Cancer</td>
<td>IUAC</td>
</tr>
<tr>
<td>International Union of Biochemistry and Molecular Biology</td>
<td>IUBMB</td>
</tr>
<tr>
<td>IVAX Research</td>
<td>IVAX</td>
</tr>
<tr>
<td>Janssen Pharmaceuticals</td>
<td>Janssen</td>
</tr>
<tr>
<td>Janssen-Ortho</td>
<td>Jansjen</td>
</tr>
<tr>
<td>Johnson & Johnson Pharmaceutical Research & Development</td>
<td>JNJR</td>
</tr>
<tr>
<td>Journal of Medical Internet Research</td>
<td>JMIR</td>
</tr>
<tr>
<td>Jupiter Bioscience (India)</td>
<td>JBP</td>
</tr>
<tr>
<td>Juvenile Diabetes Foundation International</td>
<td>JDFI</td>
</tr>
<tr>
<td>Kidney Foundation of Canada</td>
<td>KFC</td>
</tr>
<tr>
<td>Koll Pharmaceutical Company</td>
<td>KollPharm</td>
</tr>
<tr>
<td>Kourion Therapeutics (Germany)</td>
<td>Kourion</td>
</tr>
<tr>
<td>La Jolla Pharmaceutical Company</td>
<td>LJPC</td>
</tr>
<tr>
<td>Leukemia & Lymphoma Society</td>
<td>LLS</td>
</tr>
<tr>
<td>Leukemia Research Foundation</td>
<td>LRF</td>
</tr>
<tr>
<td>Leukemia Research Fund of Canada</td>
<td>LRFCC</td>
</tr>
<tr>
<td>Lifeline Foundation</td>
<td>Lifeline</td>
</tr>
<tr>
<td>Lupus Canada</td>
<td>Lupus</td>
</tr>
<tr>
<td>Lupus Clinical Trials Consortium</td>
<td>LCCTC</td>
</tr>
<tr>
<td>Mallinkrodt Medical</td>
<td>Mallinkrodt</td>
</tr>
<tr>
<td>Med Innovia Partners</td>
<td>MedIn</td>
</tr>
<tr>
<td>Medical Oncology Drug Investigation</td>
<td>MODI</td>
</tr>
<tr>
<td>Medtronic (US)</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Medtronic Neurological (US)</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Medtronic of Canada</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Merck Frosst Canada & Co.</td>
<td>MerckFro</td>
</tr>
<tr>
<td>MERIX Bioscience (US)</td>
<td>MERIX</td>
</tr>
<tr>
<td>Michael J. Fox Foundation for Parkinson's Research (US)</td>
<td>MFF</td>
</tr>
<tr>
<td>Michael Smith Foundation for Health Research</td>
<td>MSFHR</td>
</tr>
<tr>
<td>Milanka Therapeutics</td>
<td>Milanka</td>
</tr>
<tr>
<td>Millenium Pharmaceuticals (US)</td>
<td>Millenium</td>
</tr>
<tr>
<td>Ministry of Health & Long Term Care Molecular Templates</td>
<td>MHTC</td>
</tr>
<tr>
<td>Multiple Myeloma Research Foundation</td>
<td>MMRF</td>
</tr>
<tr>
<td>Multiple Sclerosis Society of Canada</td>
<td>MSSC</td>
</tr>
<tr>
<td>National Cancer Institute of Canada</td>
<td>NCIC</td>
</tr>
<tr>
<td>National Institutes of Health</td>
<td>NIH</td>
</tr>
<tr>
<td>National Organization for Rare Disorders</td>
<td>NORD</td>
</tr>
<tr>
<td>National Sanitarium Association</td>
<td>NSA</td>
</tr>
<tr>
<td>National Surgical Adjuvant Breast and Bowel Project</td>
<td>NSABP</td>
</tr>
<tr>
<td>Natural Sciences and Engineering Research Council</td>
<td>NSERC</td>
</tr>
<tr>
<td>Networks of Centres of Excellence Program</td>
<td>NCES</td>
</tr>
<tr>
<td>Neurology</td>
<td>Neurology</td>
</tr>
<tr>
<td>North American Spine Society</td>
<td>NASS</td>
</tr>
<tr>
<td>Northwestern University</td>
<td>Northwestern</td>
</tr>
<tr>
<td>Novartis Pharmaceuticals Canada</td>
<td>Novartis</td>
</tr>
<tr>
<td>NovoPharm Pharmaceuticals</td>
<td>NovoPharm</td>
</tr>
<tr>
<td>Novopharm Biotech</td>
<td>Novopharm</td>
</tr>
<tr>
<td>Nycomed Amersham</td>
<td>Nycomed</td>
</tr>
<tr>
<td>Ontario Cancer Research Network</td>
<td>OCRN</td>
</tr>
<tr>
<td>Ontario Consortium for Image Guided Therapy & Surgery</td>
<td>OCIGTS</td>
</tr>
<tr>
<td>Ontario Genomics Institute</td>
<td>OGI</td>
</tr>
<tr>
<td>Ontario HIV Treatment Network</td>
<td>OHIVT</td>
</tr>
<tr>
<td>Ontario Hospital Association</td>
<td>OHA</td>
</tr>
<tr>
<td>Ontario Innovation Trust</td>
<td>OIT</td>
</tr>
<tr>
<td>Ontario Lupus Association</td>
<td>OLPA</td>
</tr>
<tr>
<td>Ontario Mental Health Foundation</td>
<td>OMHF</td>
</tr>
<tr>
<td>Ontario Neurotrauma Foundation</td>
<td>ONF</td>
</tr>
<tr>
<td>Ontario R & D Challenge Fund</td>
<td>ORDF</td>
</tr>
<tr>
<td>Ortho Biotech</td>
<td>Ortho</td>
</tr>
<tr>
<td>Otsuka</td>
<td>Otsuka</td>
</tr>
<tr>
<td>Pfizer Canada</td>
<td>Pfizer</td>
</tr>
<tr>
<td>Pharmacutics</td>
<td>Pharmacutics</td>
</tr>
<tr>
<td>PharmaResearch</td>
<td>PharmaR</td>
</tr>
<tr>
<td>Physicians Services Incorporated Foundation</td>
<td>PSICF</td>
</tr>
<tr>
<td>Picker International Canada</td>
<td>Picker</td>
</tr>
<tr>
<td>PoBaMedical</td>
<td>PoBa</td>
</tr>
<tr>
<td>Proctor & Gamble</td>
<td>Proctor</td>
</tr>
<tr>
<td>Prostate Cancer Research Foundation of Canada</td>
<td>PCRF</td>
</tr>
<tr>
<td>Purdue Frederick</td>
<td>Purdue</td>
</tr>
<tr>
<td>Rhone Poulenc</td>
<td>Rhone</td>
</tr>
</tbody>
</table>

Funding

- Roche
- Roche Organ Transplantation Research Foundation (Switzerland)
- Roferon
- SAIC Frederick (US)
- Sandiz Canada
- Sanofi-Synthelabo Canada
- Schering Canada
- Searle Canada
- Sepsi
- Serono
- Servier Canada
- Siemens Medical Solutions
- Social Sciences and Humanities Research Council of Canada
- Solutions By Sequence
- STEBA BEHEER (Netherlands)
- Synergen Biotech
- SuperGen
- Surgical Infection Society
- Susan G. Komen Breast Cancer Foundation

Research Councils

- Synbiosis
- T Cell Sciences
- Taylor & Frances Group Publishing
- Thoracic Surgery Foundation for Research and Education
- Tiffin Trust Fund
- Toronto Medical Laboratories
- Transkaryotic Therapies
- Transplantation Technologies
- Tri-Hospital MR Centre
- BlooView Epilepsy Research
- Premier's Research Excellence Awards
- Canada Research Chairs Program
- Health Evidence Application and Linkage Network
- US Army Medical Research Acquisition Activity
- University of Toronto
- University Renal Research & Education Association
- Argonne National Laboratory
- Varian Biosynergy
- Varian Medical Systems, Inc
- Vasogen
- Vicuron Pharmaceuticals
- Wegener's Granulomatosis Association
- Workplace Safety and Insurance Board
- Wyeth-Ayerst Canada
- York Medical
- Zogenix
- Zeneca Pharma
Committees
UHN Research

Biosafety Committee
Jim Brunton (Chair)
Fei-Fei Liu
Ian McDermott
Jeff Medin
Joan Wither

Radionuclide Safety Committee
Ian McDermott (Co-Chair)
Frank Tourneur (Co-Chair)
Neil Amos
Sam Benchimol
Rod Bremner
Ron Burke
Eleanor Fish
Aaron Hendler
Scott Jarrett
Shawn Ramdhany

Research Ethics Board
BOARD A
Ronald Heslegrave (Chair)
Alan Barolet
Theodore Brown
Derek Cathcart
Lori DiMonte
Keyvan Karkouti
Robert Richardson
Katherine Roposa
Ruxandra Pinto
Robert Rueter
Heather Sampson
Ron Seto
Katherine Tsang
Dawn Virag (ex officio)
Diane Watson
Linda Wright

BOARD B
Ronald Heslegrave (Chair)
Piri Babos
David Barth
Paul Daly
Wilfred Cassar-Demajo
Patricia Clark (ex officio)
Carolyn Gillis
Jin Huh
Margaret Hume
William Hutchison
Fred Koning
Patricia Lombard
Roger McIntyre
Vaska Micevski
Katrine Milner
Gregory Pond
Dawn Virag
Jean Wong

BOARD C - ONCOLOGY
Ronald Heslegrave (Chair)
Michael Crump (Vice Chair)
Nancy Bestic
Carol Ann Buckley
Patricia Clark (ex officio)
Paola Cubillos
Laura Dawson
Pam Degendorfer
Heidi Gotthardt
Michele Henry
Natasha Leighl
Wey Leong
Michael McLean
Jane Nagai
Tony Panzarella
Larissa Potanina
Michael Reedik
Heather Sampson
Krystyna Sherman
Donald Short
Kittie Tomson
John Waldron
Woody Wells

Human Tissue Committee
Ronald Heslegrave (Chair)
Michele Henry
Richard Hill
Michael Johnston
Fei-Fei Liu
Patrick Shannon
Patricia Shaw
Ming-Sound Tsao
Mary Jane Salpeter

AD HOC MEMBERS
Sylvia Asa
Denis Bailey
Scott Boemer
Robert Bristow
Jagdish Butany
William Chapman
Michael Crump
Shereen Ezzat
Anthony Fyles
Brenda Gallie
Ralph Gilbert
Abijit Guha
Maha Guindi
David Hedley
Michael Johnston
Rita Kandel
Naomi Miller
Mark Minden
Joan Murphy
Brian O'Sullivan
Bayardo Perez-Ordonez
Patrick Shannon
Joan Sweet
Ming-Sound Tsao

Animal Care Committee
ONTARIO CANCER INSTITUTE
Rama Khokha (Chair)
Alejandro Ceccarelli
Richard Hill
Robert Lopez
Badru Moloo
Beryl Nash
Suzanne Pyte
Christine Quarrington
David Rose
Sarah Sabatinos
Barbara Wand
Richard Wells
Wen-Chen Yeh

Equipment Committee
ONTARIO CANCER INSTITUTE
Richard Hill (Chair)
Dwayne Barber
Sam Benchimol
Ian McDermott
Gil Privé
Malcolm Smith
Jim Woodgett

Space Committee
ONTARIO CANCER INSTITUTE (AD HOC)
Sam Benchimol (Chair)
Norman Boyd
Brenda Gallie
Emil Pai
Clinical Studies Resource Centre Executive

PMH/OCI
- Robert Bell (Chair)
- Armand Keating
- Mary Gospodarowicz
- Jon Irish
- Gary Rodin
- Michael Milosevic
- Malcolm Moore
- Neil Fleschner
- Gerald Devins
- Narinder Paul
- Sylvia Asa
- Lee Fairclough (CSRC)
- Darlene Dale (Cancer Registry)
- Tony Panzarella (Biostatistics)

Clinical Research Implementation Committee

CLINICAL STUDIES RESOURCE CENTRE, PMH/OCI
- Paola Cubillos-Rizo
- Pam Degendorfer
- Darlene Dale
- Gerald Devins
- Lee Fairclough
- Vicki Gillman
- Karen Hersey
- Tony Panzarella
- Susanna Selman
- Ron Seto
- Janet Smith
- Sheila Webster
- Jennifer Hornby
- Jane Negai
- Lori Ann Rayburn
- Huberta Selormey

Cancer Registry and Data Access Committee

- Jim Brierley (Co-Chair)
- Darlene Dale (Co-Chair)
- Alexandra Easson
- Vikas Gupta
- Ozgur Huner
- Jon Irish
- Brian O’Sullivan
- Krista Montgomery
- Tony Panzarella

Data Safety Monitoring Board

- PRINCESS MARGARET HOSPITAL
 - Jolie Ringash (Chair)
 - Mark Minden (Co-Chair)
 - Dale Brown
 - Paola Cubillos-Rizo
 - Gina Lockwood
 - Jennifer Petronis
 - David Warr

Animal Care Committee

- TORONTO GENERAL AND TORONTO WESTERN RESEARCH INSTITUTES
 - Thomas Lindsay (Chair)
 - Shelley Belford
 - Lyssa Cheng
 - Kathleen Cook
 - Hossam El-Behiery
 - Jim Eubanks

Equipment Committee

- TORONTO GENERAL RESEARCH INSTITUTE
 - Eleanor Fish (Chair)
 - Reg Gorczynski
 - Mansoor Husain
 - Kevin Kain
 - Andras Kapus
 - Ren-Ke Li
 - Mingyao Liu
 - Ian McDermott
 - Kelly Macdonald
 - Eldad Zacksenhaus
 - Li Zhang

Space Committee

- TORONTO GENERAL RESEARCH INSTITUTE
 - Eleanor Fish (Chair)
 - Stuart Berger
 - Elizabeth Badley
 - Simon Carette
 - Michael Fehlings
 - Andres Lozano
 - Elise Stanley
 - Martin Steinbach

Shared Equipment Committee

- TORONTO WESTERN RESEARCH INSTITUTE
 - Martin Steinbach (Chair)
 - Shelley Belford
 - Rod Bremner
 - Jan Jongstra
 - Ian McDermott
 - Linda Mills
 - Juliet Sheldon
 - Michael Tymianski

Space Committee

- TORONTO WESTERN RESEARCH INSTITUTE
 - Chris Wallace (Interim Chair)
 - Jim Eubanks
 - Paul Fortin
 - Ian McDermott

Trainee Affairs Committee

- TORONTO WESTERN RESEARCH INSTITUTE
 - Christopher Wallace
 - Frances Skinner
 - Allison Guy
 - Jillian Couto
 - Raquel Heskin

Research Appointments Committee

- TORONTO WESTERN RESEARCH INSTITUTE
 - Christopher Wallace (Acting Chair)
Research Support Services at UHN

Research Support Services provides a supportive collaborative infrastructure for research across UHN’s institutes. Approximately 240 RSS staff support UHN’s researchers, staff and trainees.

Animal Resource Centre: Provides facilities, care and technical services for animal models used in research as well as experimental design support and ethics review.

Grant and Contract Services: Reviews clinical trial agreements, tracks information regarding employees and grants, and processes documents for hiring new research staff.

Clinical Studies Resource Centres (PMH and TGH/TWH): Assists clinical investigators in initiating, conducting, managing and analyzing investigator-driven and industry-sponsored clinical research.

Research Business Development Office: Commercializes research discoveries that help investigate, treat and diagnose disease, to generate revenue for inventors and research reinvestment.

Research Communications and Proposal Development: Develops print and electronic communications in consultation with internal and external stakeholders for various audiences.

Research Ethics Board: Oversees research involving human subjects to ensure it meets scientific and ethical standards to protect patients, investigators and the institution.

Research Facilities: Involves the management of office and lab space, renovations, core equipment and general equipment, maintenance, and safety.

Research Financial Services: Provides financial information and services to investigators, research administration and sponsors related to research funding and disbursements.

Research Information Systems: Provides researchers a full range of computing services from email and file storage to remote access and the power of high processing clusters.

Research Program Planning and Analysis: Provides analyses of research activity and supports performance evaluation activities of research programs and departments.

Sterilization, Sera and Media Services: Co-ordinates the purchase, cleaning and sterilization of laboratory glassware and the provision of tissue culture and bacteriological media.

Vice President’s Office: Provides strategic leadership for UHN Research in consultation with the Research Councils.
early every paper published in a peer-reviewed journal contains a list of citations: references to earlier papers which helped the authors define and answer their current research question. A paper which is influential in its field will be cited frequently by other authors over the months and years following its publication.

Citation analysis is used by institutions around the world as one way of measuring research productivity and success. UHN Research has over the past three years begun collecting citation analysis information to determine its usefulness as a method of measuring scientific impact over time.

Citation analysis uses computer databases to search and count all references to a certain paper to determine its impact on a field. We can also do this for all papers published by a scientist or group of scientists over a defined time period.

![Citation Data for Papers Published by UHN Researchers 2001/03](chart)

<table>
<thead>
<tr>
<th>2001/03</th>
<th>Total Papers</th>
<th>Citations to Date</th>
<th>Cites/Paper</th>
<th>Papers in Top Journals*</th>
<th>Top Papers*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCI</td>
<td>1040</td>
<td>9753</td>
<td>9.4</td>
<td>142 (14%)</td>
<td>283 (37%)</td>
</tr>
<tr>
<td>TGRI</td>
<td>1620</td>
<td>12243</td>
<td>7.6</td>
<td>157 (10%)</td>
<td>518 (32%)</td>
</tr>
<tr>
<td>TWRI</td>
<td>1068</td>
<td>5524</td>
<td>5.2</td>
<td>49 (5%)</td>
<td>200 (19%)</td>
</tr>
<tr>
<td>UHN</td>
<td>3613**</td>
<td>24621</td>
<td>6.8</td>
<td>338 (9%)</td>
<td>930 (26%)</td>
</tr>
</tbody>
</table>

**Where papers are collaborations between scientists at different UHN research institutes, papers are counted only once in the “UHN” total

*“Top Journals” are those journals with an impact factor>10, and “Top Papers” are papers in the top 10% of cited papers (as defined by the Institute for Scientific Information)

![Benchmarking to Peer Institutions, 2001/03](chart)

<table>
<thead>
<tr>
<th>Top Papers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleveland Clinic</td>
<td>22%</td>
</tr>
<tr>
<td>UHN</td>
<td>26%</td>
</tr>
<tr>
<td>Johns Hopkins</td>
<td>27%</td>
</tr>
<tr>
<td>Massachusetts General Hospital</td>
<td>30%</td>
</tr>
</tbody>
</table>
Endowed Chairs at UHN

Much of the research at UHN is made possible through the generosity of donors, who contribute to UHN’s work through the three UHN Foundations and their fund-raising efforts.

Among the most generous of contributions is an endowed Chair, established at a minimum level of $2M. The income from this endowment provides ongoing funding for the Chairholder. There are currently 53 endowed Chairs established at UHN or held by UHN investigators.

Dr. Jim Woodgett
The AMGEN Chair in Cancer Research

Dr. Brian O’Sullivan
The Bartley-Smith/Wharton Chair in Radiation Oncology

Dr. Ian Tannock
The Daniel E. Bergsagel Chair in Urologic Oncology

Dr. Christopher Paige
The Ronald N. Buick Chair in Cancer Research

Dr. Charles Tator
The Robert Campeau Family Foundation Chair in Brain and Spinal Cord Research

Dr. Ming Tsao
M. Qasim Choksi Lung Cancer Chair in Translational Research

Dr. Ori Rotstein
Peter A. Crossgrove Chair in General Surgery

Dr. Glenn Regehr
Richard & Elizabeth Currie Chair in Health Professions Education Research

Dr. James Rutka
The Dan Family Chair in Neurosurgery

(to be appointed)
Angelo & Lorenza DeGasperis Chair in Cardiovascular Surgery Research

(to be appointed)
Alfredo & Teresa DeGasperis Chair in the Surgical Management of Heart Failure

(to be appointed)
Antonio & Helga DeGasperis Chair in Clinical Trials and Outcomes Research

Dr. Fei-Fei Liu
Dr. Mariano Antonio Elia Chair in Head and Neck Cancer Research

Dr. Scott Beattie
The R. Fraser Elliott Chair in Cardiac Anaesthesia

Dr. Gregory Downey
The R. Fraser Elliott Chair in Transplantation Research

Dr. K. Wayne Johnston
The R. Fraser Elliott Chair in Vascular Surgery

Dr. Armand Keating
The Gloria & Seymour Epstein Chair (in Cell Therapy & Transplantation)

Dr. David Jaffray
The Orey and Mary Fidani Family Chair in Radiation Physics

Dr. John Trachtenberg
The Fleck/Tanenbaum Chair in Prostatic Diseases

Dr. David McCreaddy
Gattuso Chair in Breast Surgical Oncology

Dr. Malcolm Moore
The K.Y. Ho Chair in Prostate Cancer Research

Dr. Michael Baker
Dr. Charles H. Hollenberg Chair in Medicine at UHN

Dr. Abhijit Guha
The Alan & Susan Hudson Chair in Neuro-Oncology

Dr. Michael Fehlings
The Krembil Family Chair in Neurology

Dr. Catherine Zahn
The Krembil Family Chair in Neurology

Dr. Norman Boyd
The Lau Family Chair in Breast Cancer Research

(to be appointed)
Harold & Shirley Lederman Chair in Palliative Care, Psychosocial Oncology

Dr. Donna Stewart
The Lillian Love Chair in Women’s Health

(to be appointed)
John and Gail MacNaughton Chair in Thoracic Radiation Oncology

Dr. Bryce Taylor
James Wallace McCutcheon Chair in Surgery

(to be appointed)
Robert & Cheryl McEwen Chair in Cardiac Regenerative Medicine

Dr. Tirone David
The Melanie Munk Chair in Cardiovascular Surgery

Dr. Mark Minden
The Philip S. Orsino Chair in Leukemia Research

Dr. John Parker
The Pharmacia Chair in Cardiovascular Research

Dr. Allan Kaplan
Loretta Anne Rogers Chair in Eating Disorders

(to be appointed)
Sandra Rotman Chair in General Surgery

Dr. John Parker
The Jack Clark Chair in Cardiovascular Research

(to be appointed)
Charles H. Hollenberg Chair in Medicine at UHN

Dr. Doris Shepherd
The John & Gail MacNaughton Chair in Palliative Care – Supportive Care – Palliative Medicine

Dr. Pat Gullane
The Robert E. Wharton Chair in Head & Neck Surgery

Dr. Peter Neligan
The Robert E. Wharton Chair in Reconstructive Plastic Surgery

U of T Chairs Held by UHN Appointed Staff

Dr. Elise Stanley
The Anne and Max Tanenbaum Chair in Molecular Neurosciences

Dr. Chris Wallace
The Fonation Baxter and Alma Ricard Chair in Cerebrovascular Neurosurgery

Dr. Peter Liu
The Heart & Stroke Foundation Polo Chair in Cardiovascular Research

Dr. Anthony Lang
The Jack Clark Chair in Parkinson’s Disease Research

Dr. Alex Jadad
The R. R. Tasker Chair in Stereotactic and Functional Neurosurgery

Dr. Frances Shepherd
The Scott Taylor Chair in Lung Cancer Research

(to be appointed)
The Tyco Chair in Minimally Invasive Surgery

Dr. Michael Jaffray
The Robert E. Wharton Chair in Cardiovascular Research

Tananbaum/Brazilian Ball Chair in Prostate Cancer Research

Dr. Andres Lozano
The R.R. Tasker Chair in Stereotactic and Functional Neurosurgery

Dr. Fei-Fei Liu
The Robert E. Wharton Chair in Cardiovascular Research

Dr. Peter Neligan
The Robert E. Wharton Chair in Reconstructive Plastic Surgery

U of T Chairs Held by UHN Appointed Staff

Dr. Elise Stanley
The Anne and Max Tanenbaum Chair in Molecular Neurosciences

Dr. Chris Wallace
The Fonation Baxter and Alma Ricard Chair in Cerebrovascular Neurosurgery

Dr. Peter Liu
The Heart & Stroke Foundation Polo Chair in Cardiovascular Research

Dr. Anthony Lang
The Jack Clark Chair in Parkinson’s Disease Research

Dr. Alex Jadad
The R. R. Tasker Chair in Stereotactic and Functional Neurosurgery
International Research Advisory Board

Victor Ling, PhD (Chair)
Vice-President, Research, at the BC Cancer Agency

Ferid Murad, MD, PhD
Nobel Prize winner and Director of the Institute of Molecular Medicine at the University of Texas

Mark Musen, MD, PhD
Head, Stanford Medical Informatics, Stanford University

Malcolm Pike, PhD
Professor in the Department of Preventive Medicine, University of Southern California

The third IRAB meeting will take place November 2004.